тапепсе of heated rock samples. — J. of Physics. E. Sci. Instr. 1975, 5, N 6, p. 579— 581. [6] Крупичка С. Физика ферритов и родственных им магнитных окислов. — М.: Мир, 1976, т. 2, 501 с. [7] Ершов Р. Е., Волгина З. М. Физические и физико-химические свойства ферритов. — М.: Мир, 1975, с. 91—93. [8] Волгов В. А. Детали и узлы радиоэлектронной аппаратуры. М.: Энергия, 1977, 654 с. [9] Максимочкин В. И., Трухин В. И. Исследование зависимости остаточной намагниченности природных магнетитов от частоты магнитного поля. — Вестн. Моск. ун-та. Сер. Физ. Астрон., 1981, 22, № 1, с. 88—90. [10] Трухин В. И. Введение в магнетизм горных пород. — М.: Изд-во Моск. ун-та, 1973, 275 с.

Поступила в редакцию 01.08.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, Т. 22, № 5

УДК 538.662

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ ТРОЙНЫХ СНЛАВОВ Cr—Co—V и Cr—Fe—V **НА ОСНОВЕ ХРОМА**

Е. И. Кондорский, Т. И. Костина, В. П. Медведчиков (кафедра магнетизма)

Введение. Как известно, небольшие добавки переходных металлов заметно изменяют температуру Нееля (T_N), средний магнитный момент (М), волновой вектор волны спиновой плотности (Q) и температуру «поворота» спинов (T_{st}) в антиферромагнитном хроме. В теории Ломера — Феддерса — Мартина [1, 2] это объясняется особенностями поверхности Ферми хрома и его сплавов, электронная и дырочная части которой зависят от концентрации С электронов проводимости. Как правило, элементы с числом 3d+4s электронов на атом (e/a), большим 6, повышают T_N и увеличивают **М** и **Q**, а элементы с e/a < 6уменьшают T_N , **М** и **Q**. Исключением являются Fe, Co и Ni. В таблице Менделеева эти элементы стоят справа от Cr и для них e/a > 6, тем не менее при увеличении концентрации примеси в сплавах Cr-Ni значения **М**, T_N и **Q** уменьшаются, T_N в сплавах Cr—Fe уменьшается, **Q** увеличивается, а **M** остается постоянным вплоть до $C_0 \approx 10$ ат. % Fe. В сплавах Cr—Co величина Q увеличивается, M не меняется, а T_N зависит от концентрации Со сложным образом: при Co<1,5 ат. % Со она понижается, между 1,5 и 2,5 ат. % растет, а при дальнейшем увеличении концентрации Со снова понижается.

Согласно нейтронографическим исследованиям [3, 4] сплавы Сг—Fe (до 1,5 ат. % Fe) и Cr—Co (до 1 ат. % Co) имеют такую же магнитную структуру, как и чистый Cr, т. е. для $T < T_N$ в них реализуется состояние с волной спиновой плотности (ВСП), которая поперечно поляризована при $T_{sf} < T < T_N$ (AF_1 -фаза) и продольно поляризована при $T < T_{sf}$ (AF_2 -фаза). Для концентрации Fe от 2 ат. % до 4 ат. % в сплавах Cr—Fe при низких температурах появляется антиферромагнитная структура (AF_0 -фаза), когда вектор Q соизмерим с вектором обратной решетки, причем переход $AF_0 \rightarrow AF_1$ является переходом первого рода. При дальнейшем увеличении концентрации Fe в сплавах Cr—Fe AF_0 -фаза наблюдается вплоть до T_N . По данным [4] в сплавах Cr—Co для концентрации Co выше 2 ат. % при $T < T_N$ существует только AF_0 -фаза.

Измерение магнитной восприимчивости (χ) сплавов Cr—Fe [5, 6] и Cr—Co [7] показали, что атомы Fe и Co имеют в матрице Cr локальный магнитный момент ~2 μ_b . Величина локального магнитного момента в этих работах определялась из анализа температурной зависимости примесной части магнитной восприимчивости ($\Delta \chi(T)$) в предположении, что вклады матрицы Сг и примеси в χ сплава аддитивны.

При $T > T_N$ зависимость $\Delta \chi(T)$ следует закону Кюри — Вейса для обоих сплавов. В сплавах Сг—Fe ниже T_N закон Кюри — Вейса также выполняется для $\Delta \chi(T)$, в то время как на кривых $\chi(T)$ сплавов Cr—Co имеется максимум при $T = T_N$, и ниже T_N величина χ резко падает с уменьшением T. Такое поведение $\chi(T)$ свидетельствует о слабой связи атомов Fe с матрицей Cr как в пара-, так и в антиферромагнитном состояниях, тогда как атомы Co слабо взаимодействуют с матрицей Cr только при $T > T_N$.

Добавляя в двойные сплавы на основе Сг третий переходный металл, можно, во-первых, варьировать T_N и температурные интервалы существования различных антиферромагнитных фаз; во-вторых, можно ожидать соответствующих изменений в значениях **M**, **Q**, T_{sf} и т. д. Что касается сплавов с «магнитными» примесями Fe и Co, то, понижая T_N путем добавок второй примеси, можно, в частности, более точно определить величину локального магнитного момента, связанного с атомами Fe и Co, так как относительная точность в определении $\Delta \chi$ при этом возрастает.

В данной работе исследовались магнитная восприимчивость и тепловое расширение сплавов (см. таблицу); Cr+1,41 ат. % Со, Cr+1,41 ат. % Со+0,77 ат. % V, Cr+0,34 ат. % Fe+0,78 ат. % V, Cr++0,34 ат. % Fe+1,63 ат. % V, Cr++0,34 ат. % Fe+1,63 ат. % V. Согласно химическому анализу концентрации Fe и Ni в сплавах 1 и 2 и концентрация Co и Ni в сплавах 3—5 не превышала 0,02 ат. %.

N₂	Сплав	Т _N , қ	χ ₀ ·10 ⁻⁸ . κΓ ⁻¹ · M ³	.θ, K	P	PV
1.	Сг — 1,41 ат% Со	278	2,772	14	2,23	_
2	Ст — 1,41 ат% Со — 0,77 ат% V	211	2,769	12	2,01	1,62
3	Cr — 0,34 ат% Fe — 0,78 ат% V	239	2,635	-29	1,59	1,40
4	Сг — 0,34 ат% Fe — 1,08 ат% V	200	2,540	20	1,11	0,84
5	Сг 0,34 ат% Fe 1,63 ат% V	170	2,640	1	1,01	0,81

Экспериментальные результаты и их обсуждение. Измерения магнитной восприимчивости χ и теплового расширения $\Delta l/l$ проводились в температурном интервале 77—400 К при фиксированных температурах. Магнитная восприимчивость измерялась методом Фарадея с помощью торсионных весов и схемы автокомпенсации. В качестве эталона использовалась платина. Относительная ощибка измерений не превышала 0,1%. Образцы вырезались из слитков в форме куба со стороной ~2 мм и имели массу ~50 мг. Тепловое расширение исследовалось с помощью тензометрических датчиков компенсационным методом относительно кварца. Датчики наклеивались на пластины с размерами $15 \times 7 \times 1$ мм.

23

На рис. 1 приведена зависимость $\chi(T)$ сплавов 1 и 2. Максимумы на кривых $\chi(T)$ при T = 278 и 211 К для сплавов 1 и 2 соответственно связаны с переходом сплава из парамагнитного в антиферромагнитное состояние ($P \rightarrow A$). Изменение концентрации V в этих сплавах составляет 0,77 ат. %, а соответствующее понижение $T_N - 67$ К, что хорошо согласуется с известными данными [8] по зависимости T_N от концентрации V в сплавах Cr—V. В области $T \sim 160$ К на графике $\chi(T)$ сплава 1 заметен размытый максимум, который, по-видимому, связан с переходом $AF_1 \rightarrow AF_0$.

На рис. 2 дана зависимость $\chi(T)$ для сплавов 3—5. При $T = T_N$ на кривых имеется небольшой пик, характерный для сплавов Cr—Fe. Магнитная восприимчивость этих сплавов растет с уменьшением температуры и при $T < T_N$. Зависимость T_N от концентрации V в этих сплавах также хорошо согласуется с данными [8] для сплавов Cr—V.

Рис. 1. Температурная зависимость магнитной восприимчивости сплавов Сг — 1,41 ат. % Со (1) — левая шкала; Сг — 1,41 ат. % Со — 0,77 ат. % V (2) — правая шкала

Рис. 2. Температурная зависимость магнитной восприимчивости сплавов: 1— Сг — 0,34 ат. % Fe — 0,78 ат. % V, 2 — Сг — 0,34 ат. % Fe — 1,08 ат. % V, 3 — Сг — 0,34 ат. % Fe — 1,63 ат. % V

Мы провели обработку экспериментальных результатов в предположении, что матрица (Сг) и примесь дают аддитивный вклад в χ сплава. Представим магнитную восприимчивость сплава в виде

$$\chi = \chi_0 + \beta T + \frac{C}{T - \Theta}, \qquad (1)$$

где χ_0 — восприимчивость матрицы Cr при 0 K (на 1 кг сплава), β — постоянный коэффициент, определенный из зависимости $\chi(T)$ при $T > T_N$ для чистого Cr($\beta = 5.81 \cdot 10^{-12}$ кг·м³·K⁻¹ [7]), Θ — парамагнитная точка Кюри, C — постоянная Кюри — Вейса.

Значения χ_0 , Θ и *C* найдем, решив систему трех уравнений, которые получаются последовательной подстановкой в (1) трех значений *T*. Средний эффективный магнитный момент на атом примеси (*P*) определим по формуле

$$P = \left(\frac{-3kC}{n\mu_{\rm B}^2}\right)^{1/2} = \left(\frac{-3k\mu_1\mu_2C}{N\left(g_1\mu_2 + g_2\mu_1\right)\mu_{\rm B}^2}\right)^{1/2},\tag{2}$$

где n — число атомов примеси на 1 кг сплава, k — постоянная Больцмана, $\mu_{\rm E}$ — магнетон Бора, N — число Авогадро, $\mu_1(\mu_2)$ — масса одного моля 1-й (2-й) примеси, $g_1(g_2)$ — весовая часть 1-й (2-й) примеся. Эффективный магнитный момент, связанный с атомами V(P_V), определялся из соотношения

$$P_{\rm V} = \frac{P(c_1 + c_2) - P_1 c_1}{c_2},\tag{3}$$

где P_1 — эффективный магнитный момент Fe или Co, P — средний эффективный момент на атом примеси, c_1 — концентрация Fe или Co (в ат. %), c_2 — концентрация V (в ат. %).

В случае сплавов Cr—Fe—V мы полагали $P_{\rm Fe}=2$. Величина Θ считалась одинаковой для обеих примесей. Основанием для этого служит тот факт, что значения Θ для трех двойных сплавов Cr—Fe [5, 6], Cr—Co [7], Cr—V (последний сплав исследовался нами) совпадают в пределах ошибки эксперимента.

На рис. З представлены графики $1/\Delta\chi(T)$ исследованных сплавов. При $T > T_N$ зависимость $1/\Delta\chi(T)$ имеет линейный характер, что подтверждает выполнение закона Кюри — Вейса для примесной части

Рис. 3. Температурная зависимость $1/\Delta \chi$ для сплавов: 1 - Cr - 1,41 ат. % Со, 2 - Cr - 1,41 ат. % Со -0,77 ат. % V (правая шкала), 3 - Cr - 0,34 ат. % Fe -0,78 ат. % V, 4 - Cr - 0,34 ат. % Fe -1,08 ат. % V, 5 - Cr - 0,34 ат. % Fe -1,63 ат. % V (левая шкала)

 $(\Delta \chi)$ магнитной восприимчивости этих сплавов. Для сплавов Cr—Fe—V закон Кюри — Вейса хорошо выполняется и при $T < T_N$. Окончательные результаты для χ_0 , Θ , P_V , T_N сплавов 1—5 приведены в таблице.

На рис. 4 даны зависимости теплового расширения сплавов 1—3. В области T_N на всех графиках хорошо заметен излом, характерный для перехода первого рода $P \rightarrow A$ в сплавах на основе хрома. Тепловое расширение сплавов 4 и 5 имеет аналогичный характер.

Выводы.

1. Атомы V имеют в матрице Сг локальный магнитный момент $\sim 1 \mu_B$, причем величина его уменьшается с увеличением концентрации V.

2. T_N тройных сплавов Cr—Co—V и Cr—Fe—V зависит от концентрации V так же, как и в случае двойных сплавов, т. е. уменьшается с увеличением концентрации V со скоростью ~100 К/ат. %.

3. Зависимость абсолютной величины χ сплавов Cr—Fe—V от концентрации V является сложной, при $C_0 < 1$ ат. % V величина χ резко уменьшается, а затем снова растет. Однако окончательный вывод о характере этой зависимости возможен только после измерений на большем числе образцов.

СПИСОК ЛИТЕРАТУРЫ

[1] Lomer W. M. Electronic structure of chromium group metals.—Proc. Phys. Soc., 1962, 80, p. 489—496. [2] Fedders P. A., Martin P. S. Itinerant antiferromagnetism.—Phys. Rev., 1966, 143, p. 246—259. [3] Ishikawa Y., Hoshino S., Endoh Y. Antiferromagnetism in dilute iron chromium alloys.—Y. Phys. Soc. Japan, 1967, 22, p. 1221—1232. [4] Endoh Y., Ishikawa Y., Ohno H. Antiferromagnetism in dilute Cr alloys with Co and Ni.—J. Phys. Soc. Japan, 1968, 24, p. 263—270. [5] Ichikawa Y., Touriner R., Filippi J. Magnetic properties of Cr rich Fe-Cr alloys at low temperatures.—J. Phys. Chem. Solids, 1965, 26, p. 1727—1745. [6] Suzuki T. Magnetic properties of the primery solid solution of chromium.— J. Phys. Soc. Japan, 1966, 21, p. 442—450. [7] Booth J. G. Magnetic properties of Cr alloys containing diluté concentrations, of Co, Ni and Fe.—J. Phys. Chem. Solids, 1966, 27, p. 1639—1645. [8] Arajs S., Rao K. V., Aström H. U., De Young T. F. Determination of Neel temperature of binary chromium alloys from electrical resistivity data.—Physica Scripta, 1973, 8, p. 109—112.

Поступила в редакцию 13.08.79

ВЕСТН. МОСК, УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, Т. 22, № 5

УДК 537.212+213

СИСТЕМА ЭЛЕКТРОДОВ ДЛЯ СОЗДАНИЯ ОДНОРОДНЫХ СКРЕЩЕННЫХ ЭЛЕКТРИЧЕСКИХ ПОЛЕИ

А. А. Белов, С. П. Ванюков, Н. В. Русанов

(кафедра физики колебаний)

Некоторые физические исследования требуют создания в ограниченном объеме однородных, скрещенных электрических полей. Например, при исследовании электрического резонанса в газах [1] исследуемое газообразное вещество должно располагаться в однородном постоянном поле Ео и одновременно подвергаться действию переменного электрического поля Е, направленного перпендикулярно к постоянному полю. В данном случае особенно жесткие требования предъявляются к однородности постоянного поля, так как нарушение ее приводит к дополнительному уширению спектральных линий. По-пытки создать требуемые поля с помощью двух обычных плоских конденсаторов со взаимно перпендикулярными пластинами (рис. 1, a) не приводят к удовлетворительному результату, так как однородность постоянного поля нарушается за счет краевых эффектов и вследствие искажения этого поля пластинами высокочастотного конденсатора.

В данном сообщении описана система электродов, позволяющая удовлетворительно решить указанную задачу, и приведены расчеты соответствующих полей.

Достаточно однородное постоянное поле E_0 и перпендикулярное ему высокочастотное поле \tilde{E} можно создать с помощью устройства, схематически представленного на рис. 1, б. Здесь постоянное поле в