УДК 538.56:535

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СЛУЧАЙНОГО ПОЛЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ТУРБУЛЕНТНОЙ АТМОСФЕРЫ

В. П. Кандидов, В. И. Леденев

(кафедра общей физики и волновых процессов)

1. В теоретических исследованиях переноса излучения в случайно-неоднородных средах применяется наряду с другими метод статистических испытаний, в котором моделируются отдельные реализации действительного процесса распространения. Усреднение по ансамблю этих реализаций позволяет найти статистические характеристики прошедшего излучения, надежность которых растет с увеличением объема выборки [1].

При получении отдельных реализаций распространения света в турбулентной атмосфере могут использоваться различные физические модели. В работе [2] распространение оптического излучения рассматривается как марковская цепь со случайными актами взаимодействия фотонов с веществом. Распространение волн оптического диапазона в турбулентной атмосфере можно также представить как прохождение последовательности фазовых экранов, моделирующих возмущения волнового фронта на флуктуациях показателя преломления. В работе [3], например, показано, что эффективная ширина светового пучка, прошедшего последовательность фазовых экранов при увеличении числа экранов, стремится к эффективной ширине пучка, прошедшего слой случайно-неоднородной среды.

Представляет интерес использование модели фазовых экранов в методе статистических испытаний для исследования на ЭВМ распространения волновых пучков в случайно-неоднородных средах. В этом случае возникает задача о моделировании на пространственной сетке случайного поля $\{\varepsilon_{m,n}\}$ с заданной статистикой. Некоторые вопросы практического получения на ЭВМ случайных полей, используемых в атмосферной оптике, рассматриваются в настоящей работе.

Большинство методов моделирования полей $\{\varepsilon_{m,n}\}$ основывается на преобразовании δ -коррелированного случайного поля $\{\eta_{ij}\}$, определенного в узлах сетки

$$\langle \eta_{ij} \eta_{kl} \rangle = \delta_{ik} \delta_{jl}, \quad i, \ k = 1, \dots, N_{s}, \ j, \ l = 1, \dots, N_{s}$$
(1)

где δ_{ij} — символ Кронекера, а N_x и N_y — число элементов δ -коррелированного поля по осям X и Y соответственно. К этим методам относятся метод линейного преобразования, метод канонических разложений, частным случаем которого является разложение в ряд Фурье, а также метод скользящего суммирования. В первых двух методах матрица преобразования поля $\{\eta_{ij}\}$ в искомое $\{\varepsilon_{m,n}\}$ вычисляется для всей сетки, что связано с большими затратами вычислительного времени и не позволяет увеличивать размеры поля $\{\varepsilon_{m,n}\}$ путем последовательного получения его элементов $\varepsilon_{m,n}$ из элементов η_{ij} . От этого недостатка свободен метод скользящего суммирования, в котором осуществляется суммирование с весом ближайших элементов δ -коррелированного по-

ля [4]:

$$\varepsilon_{m,n} = \sum_{k=-M_x}^{M_x} \sum_{l=-M_y}^{M_y} C_{kl} \eta_{m+k,n+l}, \quad \begin{array}{l} m = M_x + 1, \dots, N_x - M_x, \\ n = M_y + 1, \dots, N_y - M_y. \end{array}$$
(2)

Весовые коэффициенты C_{hl} определяются по заданной корреляционной функции R или по спектральной плотности F поля { ε }. С увеличением числа коэффициентов M_x и M_y и уменьшением шага пространственной сетки характеристики поля { ε } приближаются к заданным. Одновременно с этим растет объем вычислений и, следовательно, время получения достаточной выборки реализаций.

В настоящей работе метод скользящего суммирования используется для получения одномерных и двумерных изотропных случайных полей, моделирующих флуктуации диэлектрической проницаемости воздуха є в турбулентной атмосфере. Рассматривается возможность введения критериев для практической оценки числа весовых коэффициентов C_{hl} при моделировании на ЭВМ полей с различными корреляционными функциями.

2. Согласно [5] флуктуации диэлектрической проницаемости атмосферы имеют закон распределения вероятности, близкий к нормальному, с нулевым средним значением и с дисперсией, пропорциональной структурной постоянной C_{e}^2 . Ограничимся случаем однородного случайного поля ε . Если двумерный спектр пространственных частот \varkappa поля $\varepsilon(x, y)$ ограничен сверху ($|\varkappa_x|$, $|\varkappa_y| \ll \varkappa_0$), то на шаг сетки необходимо наложить условие

$$\Delta x, \ \Delta y \leqslant \pi/\varkappa_0. \tag{3}$$

В этом случае весовые коэффициенты С_{kl} вычисляются по формуле [4]

$$C_{kl} = \frac{\sqrt{\Delta x \Delta y}}{\pi} \int_{0}^{\pi/\Delta x} \int_{0}^{\pi/\Delta y} F^{1/2} (\varkappa_{x}, \varkappa_{y}) \cos (k \Delta x \varkappa_{x}) \cos (l \Delta y \varkappa_{y}) d\varkappa_{x} d\varkappa_{y},$$

$$k = -M_{x}, \dots, M_{x}; \ l = -M_{y}, \dots, 0, \dots, M_{y}, \qquad (4)$$

 $F(\varkappa_x,\varkappa_y)$ — двумерная спектральная плотность поля $\varepsilon(x, y)$.

При выбранном шаге Δx , Δy числа M_x , M_y определяются характерным масштабом корреляционной функции R(x, y) моделируемого поля. Действительно, в узлах сетки ее значения равны:

$$R_{m,n} = R (m \Delta x, n \Delta y) = \langle \varepsilon_{ij} \varepsilon_{i+m,j+n} \rangle.$$

Согласно формулам метода скользящего суммирования (1), (2) корреляционная функция на сетке $R^{c}_{m,n}$, вычисленная по весовым коэффициентам, имеет вид:

$$R_{m,n}^{c} = \begin{cases} \sum_{k=-M_{x}}^{M_{x}-m} \sum_{l=-M_{y}}^{M_{y}-n} C_{kl} C_{k+m,l+n} & \text{при } m \leqslant 2M_{x}+1, \ n \leqslant 2M_{y}+1, \\ 0 & \text{при } m > 2M_{x}+1, \ n > 2M_{y}+1. \end{cases}$$
(5)

Отсюда число членов в сумме (2) ограничено снизу условием

$$2M_r + 1 \ge 2Q_0/\Delta x, \ 2M_u + 1 \ge 2Q_0/\Delta y, \tag{6}$$

если корреляционная функция $R(x, y) \simeq 0$ при $|x|, |y| \leq Q_0$.

На практике спектральная плотность $F(\varkappa_x, \varkappa_y)$ неограничена и непосредственно оценки (3), (6) неприменимы. Однако характерные масштабы \varkappa функции $F(\varkappa_x, \varkappa_y)$ и масштабы Q для R(x, y) связаны обратно пропорциональной зависимостью. Поэтому в соответствии с (3), (6) число коэффициентов C_{kl} в (2) определяется произведениями $(\varkappa Q)_x$ и $(\varkappa Q)_y$ или отношениями $Q_x/\Delta x$, $Q_y/\Delta y$ для пространственной сетки.

Рассмотрим изотропное поле $\varepsilon(x, y)$. В качестве масштаба функции R(x, y) возьмем эффективный радиус корреляции Q [5]:

$$Q = \frac{1}{R(0)} \int_{0}^{\infty} R(r) dr.$$
(7)

Пусть $\Delta x = \Delta y = h$. Тогда коэффициенты C_{hl} образуют квадратную матрицу с равным числом строк и столбцов: $2M_{x}+1=2M_{y}+1=M$. Положим, что для M по аналогии с (6) справедлива следующая оценка:

$$M = \alpha \cdot Q/h. \tag{8}$$

Значение α определяется видом корреляционной функции R(x, y), точностью моделирования поля $\varepsilon(x, y)$. Выражение (8) означает, что систематическая погрешность метода зависит от одного параметра α , который равен отношению наибольшего сдвига Mh элементов δ -коррелированного поля в (2) к эффективному радиусу корреляции Q.

По корреляционной функции $R^{c}_{m,n}$ можно оценить систематическую погрешность метода, вводя, например, следующие критерии:

относительное отклонение дисперсии

$$d_{\sigma} = |R(0) - R_{0,0}^{c}|/R(0);$$

относительное отклонение эффективного радиуса корреляции

$$d_Q = |Q - Q^c|/Q,$$

где эффективный радиус Q^c на пространственной сетке вычисляется согласно (7) численным интегрированием по узловым значениям корреляционной функции $R^c_{m,n}$;

среднеквадратичное отклонение $R^{c}_{m,n}$ от значений известной корреляционной функции R(mh, nh), взятых в узлах сетки

$$\chi = \left[\sum_{m} \sum_{n} (R(mh, nh) - R_{m,n}^{c})^{2}\right]^{1/2} h/(QR(0)).$$

3. Рассмотрим одномерное поле с гауссовой спектральной плотностью

$$F(\varkappa) = \sqrt{\pi} \sigma^2 r_0 \exp\left(-\varkappa^2 r_0^2/4\right). \tag{9}$$

В этом случае

$$R\left(0
ight)=\sigma^{2}$$
 и $Q=rac{r_{0}\sqrt{\pi}}{2}$.

На рис. 1 приведены для двух значений параметра $\alpha = Mh/Q$ корреляционные функции, построенные по узловым значениям R^{c}_{m} , которые вычислялись по формулам (4), (5). С ростом α узловые значения R^{c}_{m} приближаются к R(mh) независимо от величины шага h, который менялся в диапазоне $(1 \div 4 \cdot 10^{-2})r_{0}$. Начиная с $\alpha \simeq 3$ значения R^{c}_{m} практически совпадают с заданной функцией R(mh). Зависимость критериев точности от параметра α изображена на рис. 2. Относительное отклонение эффективного радиуса корреляции d_q превышает ошибку в оценке дисперсии d_{σ} ; среднеквадратичное отклонение γ имеет наибольшее значение.

Из рис. 2 видно, что критерии точности при моделировании поля с гауссовой спектральной плотностью составляют: $d_a \simeq 10^{-4}$, $d_Q \simeq 10^{-2}$, ссли параметр $\alpha \simeq 3$. При этом значении параметра α наибольший сдвиг элементов δ -коррелированного поля при формировании искомого $\{e_m\}$ приблизительно втрое превышает эффективный радиус корреляции Q.

Рис. 1. Зависимость значений корреляционной функции R^{c_m} от безразмерного радиуса x/Q: сплошные линии — корреляционная функция, соответствующая гауссовой спектральной плотности (9); $\alpha = 1,55$ (1) и $\alpha = 6,05$ (2); пунктир — корреляционная функция, соответствующая кармановскому спектру (10); $\alpha = -1,27$ (3) и $\alpha = 3,4$ (4)

Приведенные результаты получены при широких диапазонах изменения шага сетки *h* и числа *M*. Таким образом, для поля с задан-

Рис. 2. Зависимость относительной ошибки в оценке дисперсии d_{σ} и эффективного радиуса корреляции d_Q от параметра $\alpha = Mh/Q$. Поле с гауссовой спектральной плотностью: одномерное поле (9) (сплошные линии), $d\sigma$ (1), d_Q (2), χ (5); двумерное поле (11), $+ -d\sigma$; $\bigcirc -d_Q$. Поле с кармановской спектральной плотностью: одномерное поле (10) (пунктир), $d\sigma$ (3), d_Q (4); двумерное поле (12), $\triangle - d\sigma$; $\approx -d_Q$

ным масштабом Q систематическая погрешность метода скользящего суммирования убывает с ростом параметра α , что может быть достигнуто как увеличением шага сетки h при неизменном числе M, так и увеличением числа весовых коэффициентов M на сетке с неизменным шагом h.

Для одномерного поля, соответствующего кармановскому спектру флуктуаций диэлектрической проницаемости в атмосфере, т. е. для

$$F(\varkappa) = \frac{2\sqrt{\pi} \Gamma(11/6)}{\Gamma(4/3)} \frac{\sigma^2 r_0}{(1+r_0^2 \varkappa^2)^{11/6}},$$
(10)

корреляционную функцию R(x) можно записать в виде

$$R(x) = \sigma^2 \frac{1}{2^{1/3} \Gamma(4/3)} \left(\frac{x}{r_0}\right)^{4/3} K_{4/3}\left(\frac{x}{r_0}\right),$$

$$R(0) = \sigma^2, \quad Q = r_0 \frac{\sqrt{\pi} \Gamma(11/6)}{\Gamma(4/3)} \simeq 1,865 r_0$$

где K_{4/3} (x) — функция Макдональда.

Изменение корреляционной функции на сетке R^c_m с расстоянием x при двух значениях α дано на рис. 1. Удовлетворительное моделирование со спектром (10) достигается с $\alpha \ge 3$; при этом $d_{\sigma} \le 10^{-2}$ и $d_Q \le 10^{-1}$ (рис. 2). Заметим, что для случайных полей, у которых корреляционная функция не характеризуется одним масштабом, параметр α не определяет однозначно точность моделирования.

Посредством численного эксперимента определялись корреляционные функции R^{ϵ}_{m} полей { ϵ_{m} }, полученных на ЭВМ по методу скользящего суммирования с параметром α , оцененным по (8). Для одномерных полей со спектральными плотностями (9) и (10) функции R^{ϵ}_{m} , вычисленные по выборке из 100÷200 реализаций, практически совпадают с R^{c}_{m} при одном и том же α .

4. При моделировании двумерных полей возникает также погрешность, связанная с ориентацией прямоугольной сетки. Можно ввести относительное отклонение эффективных радиусов корреляции, являющееся мерой неизотропности полученного поля:

$$\omega = \frac{|Q^c - Q_g^c|}{Q^c + Q_g^c}$$

где Q^c_g — эффективный радиус корреляции, вычисленный по диагоналям сетки: $m = \pm n$, Q^c — эффективный радиус, вычисленный по сторонам сетки: m = const или n = const.

Для двумерного поля с гауссовой спектральной плотностью

$$F(\varkappa_{x}, \varkappa_{u}) = \sigma^{2} \pi r_{0}^{2} \exp\left(-\kappa^{2} r_{0}^{2}/4\right)$$
(11)

отклонения d_{σ} и d_Q несколько превышают соответствующие величины для одномерного поля при одних и тех же значениях параметра α (см. рис. 2). Неизотропность поля ω имеет при этом порядок 10^{-2} при $\alpha = 3$, незначительно убывая с ростом параметра α .

Кармановский спектр двумерного поля флуктуаций диэлектрической проницаемости атмосферы записывается в виде [5]:

$$F^{\varepsilon}(\varkappa_{x},\varkappa_{y}) = \sigma^{2} r_{0}^{2} \frac{10 \pi}{3} (1 + r_{0}^{2} \varkappa^{2})^{-11/6}.$$
 (12)

Корреляционная функция выражается следующим образом:

$$R^{e}(x, y) = \sigma^{2} \frac{2^{1/6}}{\Gamma(5/6)} \left(\frac{\rho}{r_{0}}\right)^{5/6} K_{5/6}\left(\frac{\rho}{r_{0}}\right),$$

$$R^{e}(0) = \sigma^{2}, \ \rho^{2} = x^{2} + y^{2}, \ Q^{e} = r_{0} \frac{5\sqrt{\pi} \Gamma(4/3)}{6 \Gamma(11/6)} = 1,4041 \ r_{0}.$$

Как показывает анализ, удовлетворительная точность метода скользящего суммирования достигается для этого поля при $\alpha > 3$ (см. рис. 2). Заметим, что в этом случае d_{σ} и d_{Q} близки к соответствующим отклонениям для одномерного поля с гауссовой спектральной плотностью. Неизотропность ω поля (12) составляет порядок 10⁻² при $\alpha \sim 3$.

На рис. З приведена корреляционная функция R(r/Q) поля (12). Значения $R^c_{m,n}$, вычисленные по коэффициентам C_{kl} при M=19, практически совпадают с соответствующими значениями R(mh, nh). Численное моделирование на ЭВМ двумерного поля проводилось на квадратной сетке размером 20×20 узлов, при этом δ -коррелированное поле генерировалось на сетке размером 38×38 узлов. При статистической обработке случайных полей $\{\varepsilon_{m,n}\}$, полученных на ЭВМ, проводилось

усреднение как по реализациям, так и по сечениям сетки. Определенные таким образом значения корреляционной функции $R^{\epsilon}_{m,n}$ в узлах сетки приведены на рис. 3.

В модели (12) r_0 связано с внешним масштабом атмосферной турбулентности, который обычно превышает характерные размеры исследуемых процессов, например поперечных размеров *а* пучков когерентного излучения. Это накладывает ограничения сверху на шаг сетки h < a. Одновременно из оценки (8) и формулы (12) согласно полученным результатам следует, что число коэффициентов в алгоритме скользящего суммирования (2) должно удовлетворять условию $M \ge 4r_0/\Lambda x$.

Рис. 3. Корреляционная функция поля с кармановской плотностью (12): сплошная линия — $R(\rho)$ и $R^{c}_{m, n}$; точки — $R^{e}_{m, n}$, полученная в результате усреднения по 150 реализациям — m = const(O), n = const(igodot), $m = n(\Delta), m = -n(+)$

В результате моделирование двумерных полей вида (12) для задач распространения световых пучков в атмосфере связано с большим объсмом вычислений, поскольку число слагаемых $(2M_x+1) \cdot (2M_y+1)$ в алгоритме (2) может достигать нескольких сотен.

5. Проведенный анализ и численные эксперименты на ЭВМ показывают, что точность моделирования с помощью метода скользящего суммирования случайных полей типа (9), (10), (11), (12) с одномасштабными корреляционными функциями определяется параметром α , который означает, сколько раз на расстоянии *Mh*, равном сдвигу δ-коррелированного поля, формирующего { $\varepsilon_{m,n}$ }, укладывается эффективный радиус корреляции исследуемого поля.

СПИСОК ЛИТЕРАТУРЫ

[1] Ермаков С. М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. [2] Метод Монте-Карло в атмосферной оптике. Под ред. Г. И. Марчука. Новосибирск: Наука, 1976. [3] Петрищев В. А. Изв. вузов. Сер. Радиофизика, 1971, № 9, с. 1416. [4] Быков В. В. Цифровое моделирование в статистической радиофизике. М.: Сов. радио, 1971. [5] Рытов С. М., Кравцов Ю. А., Татарский В. И. Введение в статистическую радиофизику. М.: Наука, 1978, ч. 2.

Поступила в редакцию 08.02.80

ВЕСТН, МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23, № 1

УДК 539.196: 621.378.325: 546.214

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ ОБ УСТАНОВЛЕНИИ ГАЗОВОЙ ТЕМПЕРАТУРЫ В КОЛЕБАТЕЛЬНО-ВОЗБУЖДЕННОМ ОЗОНЕ

В. Я. Панченко, И. М. Сизова, А. П. Сухоруков

(кафедра общей физики и волновых процессов)

1. Введение. Резонансное возбуждение молекулярного газа интенсивным ИК-излучением приводит к образованию резко неравновесных населенностей колебательно-вращательных уровней молекулы. В процессе релаксации таких молекул к состоянию термодинамического равновесия вследствие нерезонансности процессов V—V, V—V' и R—T,