УДК 533.70

РЭЛЕЕВСКИЙ ГАЗ С ИСТОЧНИКАМИ ТЯЖЕЛЫХ ЧАСТИЦ

А. И. Осипов, П. А. Таджибаев

(кафедра молекулярной физики)

Впервые вопрос о распределении энергии в системах с источниками частиц был поставлен Ступоченко [1-5]. В этих работах на основе решения газокинетического уравнения Больцмана было найдено распределение поступательной энергии в одноатомных газах с б-образным источником быстрых частиц. Системы с источниками частиц моделируют широкий класс физико-химических явлений, включающих, например, обычные химические реакции, реакции горячих атомов, замедление частиц в газах и т. д. В химин горячих атомов в последнее время повысился интерес к реакциям быстрых частиц. В типичных для химии горячих атомов реагирующих системах в результате фотолиза (или каких-либо других причин) в тазовой смеси возникают быстрые частицы, которые замедляются при столкновениях с молекулами окружающего газа, а затем вступают в реакцию. Процесс замедления происходит, как правило, в среде, состоящей из молекул с заметно отличающимися массами. Например, в [6] исследовалось замедление горячих атомов D в DJ и других тяжелых замедлителях, в [7] — поступательная редажсация молекул НС1 в Н₂. Таким образом, возникает задача расчета распределения поступательной энергии малой примеси с источниками таких же частиц в термостате с сильно отличающейся массой. В [1-5] практический интерес представляло лишь квазистационарное распределение поступательной энергии порождаемых частиц (или всех частиц в случае однокомпонентной системы), поскольку такое распределение формируется очень быстро, за время порядка среднего времени свободного пробега. В противоположность этому в задаче термализации быстрых частиц в термостате с сильно отличающейся молекулярной массой важным является и сам процесс формирования квазистационарного распределения, поскольку из-за большой разницы в массах сталкивающихся частиц он происходит сравнительно медленно.

Целью настоящей работы является определение зависящей от времени функции распределения тяжелых частиц массы M, составляющих малую примесь в термостате легких частиц массы m с температурой T, в котором действует δ -образный источник, порождающий частицы M с энергией ε_0 . Такая система моделирует типичную лазерохимическую реакцию горячих атомов фтора $F+H_2=HF+H$, проте-

кающую в избытке Н2.

Уравнение Фоккера — Планка для функции распределения тяжелых частиц $f(x, \tau)$, тде $x=\varepsilon/kT$, а $\tau=t/\tau_0$ (ε — поступательная энергия R-частиц, τ_0 — характерное время обмена энергией R-частиц в легком газе), в пространственно однородном случае имеет вид

$$\frac{\partial f}{\partial \tau} = \frac{\partial}{\partial x} \left[\left(x - \frac{3}{2} \right) f + \frac{\partial}{\partial x} (x f) \right] + \eta \delta (x - x_0). \tag{1}$$

В (1) $x_0 = \varepsilon_0/kT$, η — мощность источника (число частиц, порождаемых источником в единицу времени в единице объема).

$$\tau_0 = \frac{3}{16} \frac{M}{m} \frac{1}{N\pi (r_1 + r_2)^2} \left(\frac{\pi m}{2kT}\right)^{1/2}$$

для модёли твердых сфер (радиуса r_2 для R-частиц и r_1 для легких частиц, плотность которых N) [8], явное выражение для τ_0 при про-извольном обратностепенном законе взаимодействия легких и тяжелых частиц найдено в [9]. Уравнение (1), как показано в [10], сохраняет свой вид и для произвольной стационарной функции распределения легких частиц, которая определяет τ_0 и теперь уже эффективную температуру T.

Начальное и граничные условия для уравнения (1) имеют вид $f(x,0) = \phi(x)$.

$$\left[\left(x-\frac{3}{2}\right)f+\frac{\partial}{\partial x}\left(xf\right)\right]\Big|_{\substack{x=0\\ y=\infty}}=0.$$
 (2)

Решение уравнения (1) будем искать в виде

$$f(x,\tau) = \int_{0}^{\tau} u(x,\tau') d\tau' + \varphi(x). \tag{3}$$

Легко видеть, что неизвестная функция $u(x, \tau)$ удовлетворяет однородному уравнению (1) с начальным условием

$$u(x,0) = \frac{\partial}{\partial x} \left[\left(x - \frac{3}{2} \right) \varphi(x) + \frac{\partial}{\partial x} (x \varphi(x)) \right] + \eta \delta(x - x_0)$$
 (4)

и граничными условиями (2).

Решение однородного уравнения (1) известно [8] и имеет вид

$$u(x, \tau) = x^{1/2} e^{-x} \sum_{v=0}^{\infty} c_v L_v^{1/2}(x) e^{-v\tau}, \qquad (5)$$

где $L_{v}^{1/2}(x)$ — обобщенные полиномы Лагерра [11], а

$$c_{v} = \frac{\Gamma(v+1)}{\Gamma(v+3/2)} \int_{0}^{\infty} u(x,0) L_{v}^{1/2}(x) dx.$$
 (6)

Для (4) получаем

$$c_{v} = \frac{\Gamma(v+1)}{\Gamma(v+3/2)} \left[-v\alpha_{v} + \eta L_{v}^{1/2}(x_{0}) \right], \ \alpha_{v} = \int_{0}^{\infty} \varphi(x) L_{v}^{1/2}(x) dx. \tag{7}$$

С учетом (5) и (7) решение (3) можно записать в виде

$$f(x, \tau) = x^{1/2} e^{-x} \sum_{\nu=1}^{\infty} \frac{\Gamma(\nu+1)}{\Gamma(\nu+3/2)\nu} L_{\nu}^{1/2}(x) (-\nu\alpha_{\nu} + \eta L_{\nu}^{1/2}(x_{0})) (1 - e^{-\nu\tau}) + \frac{2}{\sqrt{\pi}} \eta \tau x^{1/2} e^{-x} + \varphi(x).$$
(8)

Если учесть, что

$$\varphi(x) = x^{1/2}e^{-x}\sum_{v=0}^{\infty} \frac{\Gamma(v+1)}{\Gamma(v+3/2)} L_v^{1/2}(x) a_v,$$

то (8) можно записать в виде

$$f(x, \tau) = x^{1/2}e^{-x}\sum_{\nu=1}^{\infty} \frac{\Gamma(\nu+1)}{\Gamma(\nu+3/2)} L_{\nu}^{1/2}(x) \alpha_{\nu}e^{-\nu\tau} +$$

$$+ \left(\int_{0}^{\infty} \varphi(\xi) d\xi + \eta \tau \right) \frac{2}{\sqrt{\pi}} x^{1/2} e^{-x} +$$

$$+ \eta x^{1/2} e^{-x} \sum_{\nu=1}^{\infty} \frac{\Gamma(\nu+1)}{\Gamma(\nu+3/2) \nu} L_{\nu}^{1/2}(x) L_{\nu}^{1/2}(x_0) (1 - e^{-\nu \tau}). \tag{9}$$

Решение (9) справедливо при всех τ и практически при всех x и x_0 (за исключением x, $x_0 < m/M$ и x, $x_0 > M/m$, где диффузионное приближение не работает [8]).

Решение (8) или (9) имеет простой физический смысл. При малых значениях т (8) можно записать в виде

$$f(x, \tau) = \varphi(x) - x^{1/2} e^{-x} \sum_{v=1}^{\infty} \frac{\Gamma(v+1)}{\Gamma(v+3/2)} v L_v^{1/2}(x) \alpha_v \tau + \eta \delta(x-x_0) \tau, \quad (10)$$

где

$$\delta(x-x_0) = x^{1/2}e^{-x}\sum_{v=0}^{\infty} \frac{\Gamma(v+1)}{\Gamma(v+3/2)} L_v^{1/2}(x) L_v^{1/2}(x_0).$$

Первые два члена в (10) описывают эволюцию начального распределения к мажсвелловскому (последнее видно из анализа (8)), третий член в (10) характеризует прирост числа частиц за счет действия δ -источника. Если $\phi(x)$ — максвелловская функция, в которую входит температура, отличная от температуры легкого газа, то эволюция $\phi(x)$ к равновесному распределению происходит через непрерывную последовательность максвелловских распределений. Подчеркнем, что равенство (10) носит приближенный характер, поскольку при сколь угодно малом т всегда найдутся такие v, для которых не справедливо разложение $1-e^{-v\tau}\approx v\tau$. Этот результат отражает тот факт, что в диффузионном приближении благодаря бесконечно большой скорости распространения возмущений δ -компонента расплывается мгновенню.

При больших т (9) принимает вид

$$f(x,\tau) = \left(\int_{0}^{\infty} \varphi(\xi) d\xi + \eta \tau\right) \frac{2}{\sqrt{\pi}} x^{1/2} e^{-x} + \eta x^{1/2} e^{-x} \sum_{\nu=1}^{\infty} \frac{\Gamma(\nu+1)}{\Gamma(\nu+3/2)\nu} L_{\nu}^{1/2}(x) L_{\nu}^{1/2}(x_0).$$
 (11)

Из (11) видно, что при $\tau\gg1$ решение (9) выходит на квазистационарную стадию, на которой пополнение частиц происходит только за счет «старых», испытавших много столкновений частиц, имеющих максвелловское распределение. Второй член в (11) описывает стационарное распределение частиц, не успевших еще максвеллизоваться. Решение в виде (11) впервые было введено Ступоченко [2], который и вскрыл его физический смысл. Второй член в (11) в соответствии с [2] будем называть функцией возмущения и обозначим через $F(x, x_0)$. С учетом условий ортогональности полиномов Лагерра легко показать, что функция возмущения (и ее зависящий от времени аналог в (9)) нормирована на нуль.

Для определения поведения функции возмущения в области энергий x, $x_0 \gg 1$ выразим функцию возмущения через интегралы от неполных гамма-функций. В соответствии с [11]

$$\frac{\Gamma(3/2, y)}{\Gamma(3/2)} - H(x-y) = y^{3/2}e^{-y} \sum_{\mathbf{v}=1} \frac{\Gamma(\mathbf{v}+1)}{\Gamma(\mathbf{v}+3/2)\mathbf{v}} L_{\mathbf{v}-1}^{3/2}(y) L_{\mathbf{v}}^{1/2}(x), \ x, \ y > 0.$$
(12)

С учетом (12) можно записать

$$F(x, x_0) = \eta x^{1/2} e^{-x} \left\{ \int_a^{x_0} \left[H(x - \xi) - \frac{\Gamma(3/2, \xi)}{\Gamma(3/2)} \right] \xi^{-3/2} e^{\xi} d\xi - \int_a^x \frac{\Gamma(3/2, \xi)}{\Gamma(3/2)} \xi^{-3/2} e^{\xi} d\xi + \varphi(a, b) \right\},$$
(13)

где $H(x-\xi)$ — ступенчатая функция Хевисайда, равная 1, 1/2 и 0 соответственно при $\xi < x$, $\xi = x$, $\xi > x$, $\Gamma(3/2, \xi) = \int_{\xi}^{\infty} e^{-t} t^{1/2} dt$, a и b — произвольные малые числа, отличные от нуля. По логике вывода (13) не зависит от a и b. При достаточно больших x и x_0 интегралы в (13) определяются верхним пределом, в этом случае можно не заботиться об оценке

$$\varphi(a, b) = \sum_{v=1}^{\infty} \frac{\Gamma(v+1)}{\Gamma(v+3/2) \nu} L_{v}^{1/2}(a) L_{v}^{1/2}(b).$$

Из (13) видно, что в области $x>x_0\gg 1$

$$F(x, x_0) \sim \eta \frac{x^{1/2}}{x_0^{3/2}} e^{-(x-x_0)},$$
 (14)

при
$$x_0 > x \gg 1$$

$$F(x, x_0) \sim \eta/x. \tag{15}$$

Таким образом, б-образный источник частиц возмущает главным образом распределение частиц в области $x < x_0$, приводя к образованию своеобразного плато при $x < x_0$. При $x > x_0$ функция возмущения ведет себя как равновесная функция распределения с эффективным числом частиц. Такое поведение функции возмущения легко понять, если учесть, что основная масса столкновений приводит к уменьщению энергии у родившихся частиц. Итак, с подавляющей вероятностью родившиеся с энергией є частицы будут в результате столкновений переходить в область более низких энергий, существенно искажая функцию распределения в этой области. Вместе с тем благодаря столкновениям с легкими частицами, лежащими в хвосте функции распределения, всегда существует конечная вероятность увеличения первоначальной энергии ϵ_0 у R-частицы при столжновениях. Если функция распределения легких частиц максвелловская, то естественно, что в области $x>x_0$ функция распределения R-частицы также будет максвелловской. Однако и при произвольном стационарном распределении легких частиц по скоростям функция распределения R-частиц в области $x>x_0$, как следует из [10], также будет максвелловской. Приведенные рассуждения являются достаточно общими и не зависят от конкретного вида энергии порождаемых частиц. Подчеркнем, что впервые такое поведение функции распределения в области далеких энергий было обнаружено в [1-5].

В физических задачах функцию возмущения имеет смысл учитывать лишь в условиях (или для тех моментов времени), когда число возмущенных частиц в области энергий x, x+dx больше равновесного числа частиц в этой же области. Если в системе происходит накопление частиц, то из (14), (15) видно, что в области $x \sim x_0$ при $\phi(x) = 0$ это условие выполняется для моментов времени $\tau < (\sqrt{\pi/2})x_0^{-3/2} e^{x_0}$ причем уже для $x_0 \gg 5$ $\tau \ll 12$. В типичных условиях, например в экспериментах, рассмотренных в [6], накопления частиц не происходит (термализованные частицы удаляются из системы с помощью эффективного химического захвата), поэтому в реакции практически участвуют только возмущенные частицы.

В заключение подчеркнем, что проведенное рассмотрение выявило типичную для химии горячих атомов картину термализации быстрых частиц в атмосфере инертного газа, справедливую как для рэле-

евского, так и для лоренцевского тазов.

Авторы считают своим долгом выразить благодарность Е. В. Ступоченко за обсуждение полученных результатов.

СПИСОК ЛИТЕРАТУРЫ

[1] Ступоченко Е. В. Статистическая теория систем с источниками частиц. Докт. дис. М., 1951 (МГУ). [2] Ступоченко Е. В. ДАН СССР, 1949, 67, с. 447. [3] Ступоченко Е. В. ДАН СССР, 1949, 67, с. 635. [4] Ступоченко Е. В. ЖЭТФ, 1949, 19, с. 493. [5] Ступоченко Е. В. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1953, № 8, с. 57 [6] Jhon M. S., Dahler J. S. J. Chem. Phys., 1979, 70, р. 5292, [7] Коига К. J. Chem. Phys., 1976, 65, р. 2156. [8] Апдеген К., Shuler К. Е. J. Chem. Phys., 1964, 40, р. 633. [9] Сафарян М. Н., Ступоченко Е. В. Журн. прикл. мех. и техн. физики, 1964, № 4, с. 29. [10] Ступоченко Е. В. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1974, № 2, с. 246. [11] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1974, т. 2.

Поступила в редакцию 16.04.80

ВЕСТН. ІМОСК. УН-ТА, СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23, № 2

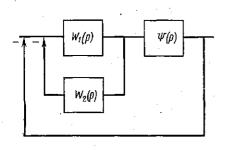
УДК 62-50

СВОЙСТВА ТРАЕКТОРИЙ КОРНЕЙ КЛАССА СИСТЕМ АВТОРЕГУЛИРОВАНИЯ, СОДЕРЖАЩИХ ЗВЕНО, ОПИСЫВАЕМОЕ УРАВНЕНИЕМ ТЕПЛОПРОВОДНОСТИ

Г. А. Бендриков, Л. Д. Лозинский

(кафедра физики колебаний)

1. Рассмотрим замкнутую систему авторегулирования, структурная схема которой представлена на рис. 1.



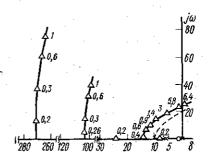


Рис. 2