УДК 621.382

МЕТОД ПЕРЕМЕННОЙ НАГРУЗКИ В СВЧ-ДИАГНОСТИКЕ НЕОДНОРОДНЫХ СРЕД

Магди Фахим (Египет), Ю. А. Пирогов

(кафедра радиофизики СВЧ)

В физике диэлектриков и полупроводников нередко появляется необходимость измерения их характеристик СВЧ-методами, например измерения распределения параметров в неоднородном слое диэлектрика с потерями (или полупроводника), размещенного в волноводе, по отражению или прохождению СВЧ-волны. В данной ситуации можно пользоваться, как это обычно делается, методом измерений на частотах вблизи плазменного резонанса [1, 2]. Однако такой метод требует проведения измерений в широком и строго определенном частотном интервале, что во многих случаях неприемлемо. Другие же методы СВЧ-диагностики неоднородных диэлектриков пока что развиты в значительно меньшей степени. Основной трудностью в их разработке является неоднозначность интерпретации экспериментальных характеристик отражения и пропускания волны неоднородной средой. Подобные задачи относятся к классу обратных задач электродинамики [3] и в каждом конкретном случае требуют специального рассмотрения с применением современного математического аппарата численных решений [3-6, 8-10]. При этом надо учитывать не только общие принципы постановки задачи [3-6], но и конкретные условия физической реализуемости решений. Именно в таком аспекте в настоящей работе и рассматривается один из методов волноводной диагностики диэлектриков с неоднородным распределением комплексной диэлектрической проницаемости.

Пусть имеется волновод, целиком заполненный по сечению диэлектриком с продольно-неоднородным распределением комплексной диэлектрической проницаемости $\varepsilon_{\rm K}(x)$ на участке $x \in [0; d]$, где d — толщина диэлектрического слоя, а $\varepsilon_{\rm K}(x) = \varepsilon_1(x) + i\varepsilon_2(x)$; $\varepsilon_2(x) = \varepsilon_2(x) / \omega \varepsilon_0$; ω — круговая частота колебаний волны в волноводе; ε_0 — диэлектрическая проницаемость вакуума; $\sigma(x)$ — проводимость диэлектрика (параметр потерь). Требуется СВЧ-зондированием образ-

ца определить функцию $\varepsilon_{\rm R}(x)$.

Для решения такой задачи можно применять следующую экспериментально-вычислительную процедуру, реализуемую в 2 этапа.

1. Проводится серия измерений коэффициента отражения волны от образца $\Gamma_{\theta} = \{\Gamma_{\theta}^{(n)}\}$ на разных частотах ω_n при фиксированной нагрузке с адмитансом $Y_{\rm H}$ или же на фиксированной частоте измеряется $\Gamma_{\theta} = \{\Gamma_{\theta}^{(n)}\}$ при различных нагрузках $Y_{\rm H}^{(n)}$.

2. На основе экспериментальных данных решается обратная за-

дача по нахождению неизвестного распределения $\varepsilon_{\kappa}(x)$.

Оба из отмеченных в п. 1 пути формирования вектора экспериментальных данных $\Gamma_3 = \{\Gamma_9^{(n)}\}$ в принципе равноценны, хотя обычно применяется метод вариации частоты при фиксированной нагрузке [2, 8]. Здесь мы, напротив, остановимся на измерениях при фиксированной частоте, но с переменной нагрузкой Y_n , осуществляя изменение Y_n перемещением короткозамыкающего поршня, установленного за образцом. Метод переменной нагрузки в решении обратных задач

После того как необходимые измерения компонент вектора $\{\Gamma_{\vartheta}^{(n)}\}$ сделаны, осуществляется второй этап процедуры — непосредственное решение обратной задачи, или интерпретация экспериментальных данных $\Gamma_{\vartheta}^{(n)}$. При этом ведется поиск такого распределения $\varepsilon^{\mathsf{T}}_{\mathsf{K}}(x)$, которое давало бы теоретическую кривую $\Gamma_{\mathsf{T}}[\varepsilon^{\mathsf{T}}_{\mathsf{K}}(x), Y_{\mathsf{H}}]$, получаемую решением прямой задачи при фиксированном распределении $\varepsilon^{\mathsf{T}}_{\mathsf{K}}(x)$ и

наиболее близкую к экспериментальной зависимости

$$\Gamma_{\mathfrak{d}}[\varepsilon_{\mathtt{R}}(x), Y_{\mathtt{H}}].$$
 (1)

Для этого по экспериментальным значениям $\{\Gamma_{\theta}^{(n)}\}$ и известным величинам ω , d, $Y_{\mathbf{H}}^{(n)}$ строится функционал уклонения теоретических значений $\Gamma_{\mathbf{T}}$ от экспериментальных Γ_{θ} , зависящий от распределения $\varepsilon_{\mathbf{K}}(x)$, т. е. $F[\varepsilon^{\mathbf{T}}_{\mathbf{K}}(x)]$. Искомая функция $\varepsilon^{\mathbf{T}}_{\mathbf{K}}(x)$, которая обеспечивает минимум функционала уклонений $F[\varepsilon^{\mathbf{T}}_{\mathbf{K}}(x)]$, находится из решения экстремальной задачи

$$\min_{\mathbf{e}_{\kappa}^{\mathrm{T}}(x)} F\left[\mathbf{e}_{\kappa}^{\mathrm{T}}(x)\right]. \tag{2}$$

Это означает, что минимум функционала $F[\varepsilon^{\mathsf{T}}_{\mathsf{R}}(x)]$ стремится к малому числу и, зависящему от точности измерения, причем с повышением точности измерений, а значит, и информативности экспериментальных величин $\{\Gamma_9^{(n)}\}$ μ уменьшается. В общем случае задача по нахождению $\varepsilon_{\kappa}(x)$ из условия близости теоретических и экспериментальных кривых $\Gamma[\varepsilon_{\kappa}(x), Y_{\kappa}]$ является некорректной, так как ее решение может оказаться неустойчивым по отношению к ошибкам экспериментальных величин [5]. Однако на некоторых выбранных специальным образом множествах пробных функций $\varepsilon^{\mathrm{T}}_{\mathrm{K}}(x)$ задача вводится в класс корректности и имеет устойчивое к разбросу входных параметров решение. Выбор подходящего вида функций должен осуществляться с учетом априорной информации об объекте и выполнения условий физической реализуемости решений. Если, например, известно заранее, что функция $\varepsilon_{\kappa}(x)$ непрерывная и имеет непрерывные производные, то устойчивым в этом случае будет решение, задаваемое на множестве аналитических функций в виде степенных рядов [8] со степенью, не превышающей некоторого заданного числа:

$$\varepsilon_{\kappa}(x, \mathbf{a}) = \sum_{n=0}^{N} a_n x^n, \tag{3}$$

где $x \in [0; d]; a = \{a_n\}$ — комплексный вектор коэффициентов степенного ряда (3).

Тем самым задача вводится в класс корректности. При этом процедура минимизации функционала осуществляется известными методами [5, 6, 8].

Для данной задачи удобно взять функционал уклонения $F[\varepsilon_{K}(\mathbf{a}, x)] = F(\mathbf{a})$ в виде

$$F(\mathbf{a}) = \sum_{m=1}^{M} \left[\frac{R_{\mathrm{T}}(Y_{\mathrm{H}}^{(m)}, \mathbf{a}) - R_{\mathrm{9}}(Y_{\mathrm{H}}^{(m)})}{R_{\mathrm{T}}(Y_{\mathrm{H}}^{(m)}, \mathbf{a})} \right]^{2} + \left[\frac{\Phi_{\mathrm{T}}(Y_{\mathrm{H}}^{(m)}, \mathbf{a}) - \Phi_{\mathrm{9}}(Y_{\mathrm{H}}^{(m)})}{\Phi_{\mathrm{T}}(Y_{\mathrm{H}}^{(m)}, \mathbf{a})} \right]^{2},$$
(4)

где М — число измерений экспериментальных величин

$$\Gamma_{3}^{(m)} = R_{3}^{(m)} e^{i\Phi_{3}^{(m)}}.$$

Методика определения $\varepsilon_{\mathbb{R}}(\mathbf{a}, x)$ заключается в таком поиске пробных параметров вектора $\mathbf{a} = \{a_n\}$, чтобы функционал $F(\mathbf{a})$ сходился к своему минимальному значению. Минимизацию $F(\mathbf{a})$ можно проводить по одной из схем градиентного спуска по параметрам а [9, 10].

Эффективность решения обратной задачи зависит как от формы записи функционала, так и от способа определения теоретических величин $R_{\rm T}$, $\Phi_{\rm T}$, соответствующих заданному набору параметров a_n , которые характеризуют, в свою очередь, посредством (3) пробный профиль $\varepsilon^{\mathrm{T}}_{\mathrm{K}}(x)$. Из ряда опробованных конструкций функционала $F(\mathbf{a})$ оптимальной оказалась форма (4), в которой применение относительных уклонений модуля и фазы коэффициента отражения приводит к тому, что информативный вклад отдельных членов ряда (при разных т) оказывается равносильным. Что же касается формирования (вычисления) функций $R_{\rm T}({\bf a})$ и $\Phi_{\rm T}({\bf a})$, здесь оказалась весьма эффективной импедансная методика решения прямой задачи, развитая ранее [11] для волновода с поглощающей диэлектрической вставкой и основанная на методике Бреховских [12], с представлением неоднородной среды в виде набора тонких слоев. В результате из множества функций вида (3) выбиралось решение обратной задачи, удовлетворяющее условию минимума функционала $F(\mathbf{a})$.

Для проверки действенности рассмотренной методики были проведены численные эксперименты, в которых задавалось некоторое распределение параметров образца $\varepsilon_{\rm H}(x)$ (истинное распределение) и репрямой задачи находились однозначные зависимости $\Gamma[\varepsilon_{\scriptscriptstyle
m K}(x),\ Y_{\scriptscriptstyle
m H}]$ — они фигурировали в решении обратной задачи как

экспериментальные величины.

Пример. Истинное распределение проводимости образца $\sigma(x)$ имеет вид синусоиды (действительная часть ϵ_1 комплексной проницаемости $\varepsilon_{\rm R}(x)$ от координаты не зависит : $\frac{d\varepsilon_1}{dx} = 0$):

$$\sigma(x) = 1 + 3 \sin\left(\frac{\pi x}{d}\right),\tag{5}$$

причем выбирается f = 18 ГГц, d = 0.22 см, M = 20;

$$Y_{\rm H}^{(m)} = -i \, {\rm ctg} \, (Bd_1^{(m)}),$$

 $\varepsilon_1 = 16$, B и λ_g — постоянная распространения и длина волны в волноводе сечением 5.5×11 мм на частоте f.

В результате решения обратной задачи получена функция множества (3) при N=4:

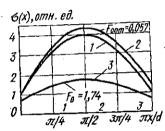
 $\sigma(x) = 0.781 + 58.966x - 250.104x^4 - 19.999x^3 + 20.000x^4$

которая, как видно из рисунка, весьма точно следует синусоиде (5).

На рисунке показано истинное распределение $\sigma(x)$ (функционал (4) для него равен нулю: F=0), начальное приближение $\sigma_0(x)$ и найденное решение $\sigma_{\tau}^{(M)}(x)$. Соответствующее $\sigma_0(x)$ значение функционала (4) составило $F_0=1,74$; для оптимального распределения $\sigma_{\tau}^{(M)}(x)$, полученного в результате минимизации, $F_{\tau}^{(M)}[\sigma_{\tau}^{(M)}(x)] = 0,057$.

Приведенный пример показывает высокую эффективность рассмотренного метода диагностики на СВЧ. Следует оговорить, однако, и ограничения в его применимости. Очевидно, что метод переменной нагрузки работает только в случае достаточной прозрачности образца для зондирующей волны — вклад реакции переменной нагрузки в отраженный сигнал должен быть значительным. Это накладывает, например, следующие ограничения на интегральный допустимый уровень потерь в образце: при усредненной по образцу проводимости, равной $\overline{\sigma(x)}$, толщина образца d не может превышать величину порядка

$$\overline{\delta} = \sqrt{\frac{2}{\omega \mu_0 \overline{\sigma(x)}}}.$$



Истинное распределение $\sigma(x) = 1 + 3 \sin \pi x/d$ (1), восстановленное решением обратной задачи (2) и начальное приближение (3)

Возможности метода переменной нагрузки несколько расширяются в случае двустороннего зондирования, когда грани образца поочередно облучаются, находятся соответствующие решения обратной задачи и осуществляется последующее сшивание решений. Однако ясно, что для образцов с малой прозрачностью можно осуществлять диагностику параметров неоднородной среды лишь в поверхностном слое толщиной δ ; при этом на первом этапе (измерения комплексного вектора $\Gamma_{\mathfrak{d}}$) следует применять метод переменной частоты (если возможно, вблизи плазменного резонанса [1, 2]), тогда как на втором этапе (решение обратной задачи) описан-

ная здесь более общая, чем в [2], процедура численного решения может быть, конечно, сохранена.

СПИСОК ЛИТЕРАТУРЫ

[1] Голант В. Е. СВЧ-методы исследования плазмы. М.: Наука, 1968. [2] Усанов Д. А., Буренин П. В. Микроэлектроника, 1975, 4, № 2, с. 140. [3] Свешников А. Г., Ильинский А. С. Вестн. Моск. ун-та. Сер. Вычислит. матем. и кибернетика, 1978, № 4, с. 3. [4] Тихонов А. Н. ДАН СССР, 1963, 153, № 1, с. 49. [5] Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1974. [6] Гончарский А. В., Черепащук А. М., Ягола А. Г. Численные методы решения обратных задач астрофизики. М.: Наука, 1978. [7] Лебедева В. В. Техника оптической спектроскопии. М.: Изд-во МГУ, 1977. [8] Вычислительные методы в электродинамике. Под ред. Р. Митры. М.: Мир, 1977. [9] Бахвалов Н. С. Численные методы. М.: Наука, 1973, с. 631. [10] Поляк Б. Т. ЖВМиМФ, 1963, 3, № 4, с. 643. [11] Козарь А. В., Пирогов Ю. А. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1972, 13, № 5, с. 573. [12] Бреховских Л. М. Волны в слоистых средах. М.: Наука, 1973, с. 502.

Поступила в редакцию 06.11.80