корреляция $R_{12} = \frac{\overline{u'w'}}{\sigma_1 \sigma_2}$, которые определялись по 528 значениям u'и w'. Это позволило рассчитать значения турбулентного трения по формуле

 $\tau = -\rho R_{12} S_1 S_2 \bar{u}.$

Вертикальные профили τ приведены на рис. 2. Из рисунка видно, что в области градиентного течения τ имеет два противоположных по знаку экстремума, причем смена знака происходит на глубине, где средняя скорость компенсационного противотечения достигает наибольшего значения. Согласно результатам работы [2], в области дрейфового течения величина τ имеет максимум на глубине, соответствующей подошве волны, а затем резко уменьшается. Наши измерения показали, что в градиентном течении τ убывает по мере приближения к переходному слою. На основании этих данных можно сделать предположение, что в переходном слое значения τ существенно меньше, чем в дрейфовом и градиентном течениях.

Коэффициент турбулентной вязкости μ определялся по формуле $\mu = \tau / \left(\frac{d\bar{u}}{dz}\right)$. Графики распределения μ по глубине представлены на рис. 3. Как видно из рисунка, величина μ резко возрастает при удалении от твердой границы потока и вновь уменьшается при приближении к переходному слою, причем максимальные значения μ увеличиваются с увеличением *H*. Следует также отметить отсутствие отрицательных значений μ , что объясняется одновременной сменой знака у градиента скорости течения и у значений турбулентного трения τ .

СПИСОК ЛИТЕРАТУРЫ

[1] Букина Л. А., Шелковников Н. К., Миронов П. В. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1974, 15, № 5, с. 574. [2] Доброклонский С. В., Лесников Б. М. Изв. АН СССР. Сер. ФАО, 1975, 11, № 9, с. 942.

> Поступила в редакцию 10.07.79 В окончательной редакции 26.10.81

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23, № 3

УДК 621.373:535+535.375.5

ИССЛЕДОВАНИЕ ИНФРАКРАСНОГО ВЫНУЖДЕННОГО ТРЕХФОТОННОГО РАССЕЯНИЯ СВЕТА В ПАРАХ РУБИДИЯ

Н. В. Знаменский, В. И. Одинцов

(кафедра оптики и спектроскопии)

Впервые инфракрасное вынужденное трехфотонное рассеяние света (ИК ВТФР) с перестраиваемой частотой было обнаружено в парах натрия [1]. В работе [2] сообщалось о наблюдении перестранваемого по частоте ИК ВТФР в парах рубидия (Rb). Цель настоящей работы состояла в детальном исследовании энергетических, пороговых и спектральных характеристик ИК ВТФР вблизи переходов $6^2P_{3/2}$ — $5^2D_{3/2,5/2}$ атома Rb. В качестве источника возбуждающегоизлучения использовался лазер на красителе с перестраиваемой частотой и узкой ($\simeq 0,2 \text{ см}^{-1}$) линней генерации. Лазерное излучение с помощью телескопической системы, уменьшавшей диаметр светового пучка до ~ 1 мм, фокусировалось на кювету с парами Rb длиной 18 см. Температура паров составляла 260°С (плотность атомов $N \sim -6 \cdot 10^{15} \text{ см}^{-3}$). Выходящее из кюветы инфракрасное излучение направлялось на щель дифракционного монохроматора с шириной аппаратной функции 0.5 см⁻¹, а затем — в

(1)

 ω_{R}

ИК-приемник, сигнал с которого поступал на вход осциллографа. Такая система позволяла регистрировать ИК-сигналы с энергией ~2.10⁻⁷ Дж.

V.0+ 5.23 MON 5.239 MKM

 $6^2 P_{1/2} - 6^2 S_{1/2} - 4^2 D_{5/2} + 3\sqrt{2}$

5²P_{3/2}

5² P_{1/2}

52 S1/2

 ω_{L}

 ω_{L}

a

52 D5/2

62 P3/2

 ω_R

 ω_{A}

 $\begin{array}{c} W_{T}, P_{L}^{nap}, \kappa BT \\ 10,0 + 5^{2}S_{\frac{1}{2}} + 5^{2}D_{\frac{1}{3}} \\ 7,5 + 300 \\ 5,0 + 200 \\ 2,5 + 100 \\ 12850 \\ 12850 \\ 12854 \\ 12858 \\ 12$

Рис. 1. Схема возбуждения ИК ВТФР в парах рубидия с использованием одного (а) и двух (б) лазеров

Рис. 2. Частотные зависимости энергии при мощности накачки *P*_L 200 кВт (1) и порога возбуждения (2) ИК ВТФР

При перестройке частоты возбуждающего излучения ω_L в окрестностях двухфотонных переходов $5^2S_{1/2}$ — $5^2D_{3/2,5/2}$ (рис. 1, *a*) было зарегистрировано перестраиваемое по частоте ИК ВТФР на частоте ω_T , соответствующее переходу атома с уровня $5^2S_{1/2}$ на уровень $6^2P_{3/2}$. Кроме того, наблюдалось интенсивное направленное ИК-излучение, соответствующее ряду атомных переходов Rb, которое возникало в результате многофотонной ионизации атомов [2]. При этом две из зарегистрированных ИК-линий, соответствующие переходам $6^2P_{3/2}$ — $5^2D_{3/2,5/2}$ (5,239 и 5,231 мкм), имели общий с ИК ВТФР конечный уровень.

На рис. 2 (кривая 1) приведена частотная зависимость энергии ИК ВТФР, полученная при мощности накачки $P_L \simeq 200$ кВт, намного превышающей порог возбуждения ИК ВТФР. Обращает на себя внимание провал в энергии рассеянного излучения при приближении частоты возбуждающего лазера ω_L к частоте двухфотонного перехода $5^2S_{1/2} - 5^2D_{5/2}$. Его появление, по-видимому, связано с тем, что при этом резко возрастает эффективность возбуждения сильной ИК-линин 5,231 мкм ($6^2P_{3/2} - 5^2D_{5/2}$), имеющей тот же конечный уровень $6^2P_{3/2}$ [2]. Заселение этого уровня излучением линии 5,231 мкм и приводит к уменьшению энергии ВТФР в условиях двухфотонного резонанса.

Кривая 2 рис. 2 представляет собой график частотной зависимости порога возбуждения ИК ВТФР. Как видно из графика, пороговая

70

кривая имеет минимум в условиях резонанса с частотой двухфотонного перехода $5^2S_{1/2} - 5^2D_5/2$. В этом случае пороговые мощности возбуждающего лазера составляют $P_L^{nop} \sim 1$ кВт. В области длинноволновых ($\sim 3-4$ см⁻¹) и коротковолновых ($\sim 6-8$ см⁻¹) расстроек наблюдается очень резкий рост порога возбуждения ИК ВТФР. Этот рост, по-видимому, обусловлен заселением конечного уровня $6^2P_3/2$ излучением ИК-линий 5,231 и 5,239 мкм, интенсивность которых значительно возрастает при этих значениях расстроек [2].

Во всем исследуемом диапазоне перестройки частоты возбуждающего излучения измерялась ширина линии ИК ВТФР. Установлено, что при ширине линии накачки ~0,2 см⁻¹ ширина регистрируемого контура линии ИК ВТФР составляла 1—1,5 см⁻¹, т. е. существенно превосходила ширину аппаратной функции монохроматора. Отметим, что аналогичное уширение контура линии ИК ВТФР при возбуждении в парах натрия наблюдалось и в работе [1]. Причины такого уширения пока остаются невыясненными.

Представляло значительный интерес исследовать ИК ВТФР при одновременном выполнении условий как двухфотонного, так и однофотонного резонанса. С этой целью ИК ВТФР возбуждалось с использованием двух лазеров (рис. $1, \delta$). Частота одного из них (лазер A) 5²P₃/₂, включая точную настройку в резонанс. Частота второго лазера (лазер В) _{ФВ} подбиралась так, чтобы суммарная частота $\omega_A + \omega_B$ оставалась постоянной и была близка к частоте двухфотонного перехода $5^2S_1/2$ — $5^2D_5/2$. Согласно теории, вследствие близости частоты ω_A к частоте ω_0 однофотонного перехода $5^2S_{1/2}$ — $5^2P_{3/2}$ можно было бы ожидать значительного увеличения эффективности возбуждения ИК ВТФР. Однако в экспериментах наблюдалась прямо противоположная картина: с приближением частоты ω_A к частоте ω_0 порог возбуждения ИК ВТФР быстро возрастал, а энергия уменьшалась. Такое необычное поведение ВТФР можно объяснить эффективным возбуждением ИК ВКР на частоте ω_s (рис. 1, б), возникающим при приближении частоты ω_B к переходу $5^2 P_3/_2 - 5^2 D_5/_2$ [2]. Заселение уровня излучением линии ВКР и приводит к резкому возрастанию уровня $6^2 P_3/_2$ порога возбуждения и уменьшению энергии ИК ВТФР в этих условиях.

Измерения энергии ИК ВТФР показали, что при мощности возбуждающего излучения $P_L \simeq 100$ «Вт энергия импульса ВТФР составляла $\simeq 5 \cdot 10^{-5}$ Дж. Таким образом, коэффициент преобразования лазерного излучения в излучение ИК ВТФР достигал $\sim 10\%$ (по числу квантов), что значительно выше полученного в работах [1, 3]. Довольно высокий коэффициент преобразования при сравнительно низком пороге возбуждения позволяет использовать процесс ИК ВТФР для получения когерентного перестраиваемого по частоте излучения в инфракрасной области спектра.

СПИСОК ЛИТЕРАТУРЫ

[1] Cotter D., Hanna D. C., Tuttlebee W. H. W., Yuratich M. A. Optics Comm., 1977, 22, N 2, p. 190. [2] Королев Ф. А., Знаменский Н. В., Одинцов В. И. Письма в ЖЭТФ, 1978, 28, № 7, с. 453. [3] Reif J., Walther H. Appl. Phys., 1978, 15, N 4, p. 361.

Поступила в редакцию 30.03.81