Если в фигурной скобке (8) оставить только первые два слагаемых (N=0), мы получим результат Силина [3]. Отклонение (8) от точного значения ε_i при $z \rightarrow 1+0$ стремится к бесконечности. Фиксированная точность в этом случае может быть обеспечена лишь за счет возрастания N. В этом состоит причина ошибочности предельного перехода, сделанного Силиным [3] и воспроизведенного в [5].

Из формул (7) и (8) нетрансцендентное дисперсионное соотношение может быть получено методом итераций. Так, при учете квадратичных поправок по α и $3k^2c^2/\omega^2_{\ n}\alpha$

$$\omega^2 \simeq \frac{\omega_p^2 \alpha}{3} \left[1 + \frac{3}{5} \left(\frac{3k^2 c^2}{\omega_p^2 \alpha} \right) + \dots \right] \left(1 - \frac{\alpha^2}{2\frac{3}{4}} \right). \tag{9}$$

Разложение (9) может быть продолжено. Вследствие равномерной сходимости разложения для ε_l и выполнения условий сходимости метода итераций решения дисперсионного уравнения это разложение даст сходящийся в длинноволновой области ряд. Аналогичный ряд по степеням $1/\alpha$ и $1/\alpha z^2$ является расходящимся асимптотическим разложением.

Таким образом, получено представление диэлектрической проницаемости релятивистской плазмы сходящимся рядом в длинноволновой области и как следствие — корректная аппроксимация $\varepsilon_l(k, \omega)$ при высоких температурах.

СПИСОК ЛИТЕРАТУРЫ

[1] Кузьменков Л. С. ДАН СССР, 1978, 241, № 2, с. 322. [2] Mikhailovskii A. B. Plasma Phys., 1980, 22, р. 133. [3] Силин В. П. ЖЭТФ, 1960, 38, c. 1577. [4] Godfrey B. B., Newberger B. S., Taggart K. A. IEEE Trans. Plasma Sci., 1975, 3, N 2, р. 68. [5] Лифшиц Е. М., Питаевский Л. П. Физическая кинетика. М., 1979, с. 170.

Поступила в редакцию 08.06.81

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982. т. 23, № 3

УДК 621.378.001

ОПТИМАЛЬНЫЙ ЛИНЕЙНЫЙ ЭЛЕКТРООПТИЧЕСКИЙ ЭФФЕКТ В КРИСТАЛЛАХ КЛАССОВ mm2 и 4mm

В. А. Дианова, Е. Р. Мустель

(кафедра физики колебаний)

В системах управления лазерным излучением (модуляторы, дефлекторы, пространственно-временные модуляторы и т. д.), основанных на линейном электрооптическом эффекте, желательно иметь минимальное управляющее (полуволновое) напряжение. Для этого, как правило, необходимо использовать кристаллы косых срезов [1, 2]. Направления экстремального электрооптического эффекта для таких распространенных кристаллов, как LiNbO₃ и *KDP*, приведены в ряде работ [1, 3].

Представляет интерес рассчитать оптимальные направления и соответствующие им полуволновые напряжения для кристаллов NaBa₂Nb₅O₁₅ (класс mm 2) и Ba_{0,25}Sr_{0,75}Nb₂O₆ (класс 4 mm), обладающих достаточно высокими электрооптическими коэффициентами. Для нахождения направлений максимального электрооптического эффекта использован метод, развитый в работе [4]. Расчет проведен только для практически важных случаев продольного и поперечного электрооптических эффектов.

Зададим направление вектора волновой нормали k₃ сферическими координатами θ и φ (рисунок). Введение сферических координат поз-

воляет упростить приведенную в [1] систему уравнений для нахождения оптимальных направлений электрического поля E, векторов поляризации k₁, k₂ и вектора k₃.

Продольный 1. электрооптический эффект. Рассчитаем оптимальные срезы для кристаллов класса mm 2. Расчет проведем в предположении малой двуосности кристаллов, что действительно имеет место для наиболее перспективного кристалла этого класса NaBa₂Nb₅O₁₅ (НБН) [5]. Для волны света с вектором поляризации k₁ эффективный электрооптический коэффициент при |E| = 1 имеет вид

 $r_{s\phi} = (\mathbf{ER}_1) = -\sin 2\theta \cdot \sin \theta \cdot (r_{51} \cos^2 \varphi + r_{42} \sin^2 \varphi) +$

 $+\cos^3\theta \left(r_{13}\cos^2\varphi + r_{23}\sin^2\varphi\right) + r_{33}\cos\theta\cdot\sin^2\theta,$

где **R**_i — электрооптический вектор [4], *г*_{ik} — электрооптические коэффициенты.

Оптимизируя это выражение, можно определить направление волнового вектора \mathbf{k}_3 , направление вектора поляризации \mathbf{k}_i и соответствующее им максимальное значение эффективного электрооптического коэффициента $r_{\rm sp}^{\rm ont} = (\mathbf{ER}_1)^{\rm ont}$.

Для волны с вектором поляризации k_2 (ER₂) == cos θ ($r_{13} \sin^2 \varphi + r_{23} \cos^2 \varphi$). Результаты расчета оптимальных направлений для фазовой модуляции с вектором поляризации k_1 и для модуляции по поляризации (класс mm 2) приведены в табл. 1. При фазовой модуляции с вектором поляризации k_2 $r_{3\Phi}^{onr}$ равно r_{13} или r_{23} при θ =0 и φ =0 или $\pi/2$. Для каждого из оптимальных направлений может быть определено полуволновое напряжение $U_{\lambda/2}^{\text{мин}} = \lambda/n^3 r_{3\Phi}^{onr}$. Для нахождения θ^{onr} и $U^{\text{мин}}_{\lambda/2}$ необходимо знать не только величины r_{ik} , но и их знаки. Для кристалла НБН знаки коэффициентов r_{13} , r_{23} , r_{33} совпадают, однако неизвестны знаки r_{42} и r_{51} [5]. Оптимальный угол θ^{onr} слабо зависит от соотношения знаков r_{ik} . Значения θ^{onr} и $U^{\text{мин}}_{\lambda/2}$ при фазовой модуляции с вектором поляризации k_1 и модуляции по поляризации для кристалла НБН приведены в табл. 2.

Кристаллы класса 4 mm имеют те же отличные от нуля электрооптические коэффициенты, что и кристаллы класса mm 2, при этом $r_{13} = r_{23}$ и $r_{42} = r_{51}$. Для кристалла $Sr_{0,75}Ba_{0,25}Nb_2O_6$ (БСН) знаки коэффициентов r_{ik} также неизвестны. Однако большое значение коэффициента $r_{33} = 1340 \cdot 10^{-12}$ м/В делает его определяющим. Оптимальный угол θ при модуляции по поляризации равен ~ 59°. Продольное полуволновое напряжение составляет ~ 110 В как для фазовой, так и для модуляции по поляризации.

2. Поперечный электрооптический эффект. В случае поперечного электрооптического эффекта вектор напряженности электрического поля Е перпендикулярен вектору k₃ и в общем случае составляет

-80

						Таблица 1
оопти- ккий рект	φ ^{our}	Соотношения, определяющие в ^{онт}	hs.	۵	Å.	ው መርካ መርካ
	;		фазовая модуляци	b;		
าเราะ	0	$\cos^2 \theta = \frac{2r_{\rm 51} - r_{\rm 33}}{3(2r_{\rm 51} - r_{\rm 33} + r_{\rm 13})}$	(sin θ , 0, cos θ)	(sin θ, 0, cos θ)	$(\cos \theta, 0, -\sin \theta)$	$\frac{2}{3} \left(2r_{\rm st} - r_{\rm 33} \right) \cos \theta$
	л/2	$\cos^2 \theta = \frac{-t_1 t_2 - t_{33}}{3 (2t_{42} - t_{33} + t_{23})}$	(0, sin θ, cos θ)	$(0, \sin \theta, \cos \theta)$	$(0, \cos \theta, -\sin \theta)$	$\frac{z}{3}$ (2 r_{42} - r_{33}) cos θ
ц ц ний	0	$\sin^2 \theta = \frac{2r_{51} + r_{13}}{3(2r_{51} - r_{33} + r_{13})}$	(sin 0, 0, cos 0)	$(\cos \theta, 0, -\sin \theta)$	$(\cos \theta, 0, -\sin \theta)$	$\frac{2}{3} \left(2r_{\mathrm{51}} + r_{\mathrm{13}} \right) \sin \theta$
	π/2	$\sin^2 \theta = \frac{2t_{32} + t_{23}}{3(2t_{42} - t_{33} + t_{23})}$	(0, sin θ, cos θ)	$(0, \cos \theta, -\sin \theta)$	(0, $\cos \theta$, $-\sin \theta$)	$rac{2}{3}$ ($2r_{43}$ + r_{23}) sin $ heta$
			твина по поляри	Bailuta	•	· · ·
	0	$\cos^{3}\theta = \frac{2r_{51} - r_{38} + r_{29}}{3(2r_{51} - r_{38} + r_{19})}$	$(\sin\theta, 0, \cos\theta)$	(sin θ, 0, cos θ)	$(\cos \theta, 0, -\sin \theta)$	$\frac{2}{3} (2r_{51} - r_{35} + r_{23}) \cos \theta$
ИНИНИ	n/2	$\cos^3 \theta = \frac{2t_{42} - t_{33} + t_{13}}{3(2t_{42} - t_{43} + t_{23})}$	$(0, \sin \theta, \cos \theta)$	(0, sin θ, co. θ)	$(0, \cos 0, -\sin \theta)$	$\frac{2}{3} (2r_{42} - r_{33} + r_{13}) \cos \theta$
	0	$\sin^2 \theta = \frac{2r_{51} - r_{23} + r_{13}}{3 (2r_{51} - r_{33} + r_{13})}$	(sin 0, 0, cos 0)	$(\cos \theta, 0, -\sin \theta)$	$ k_1 (\cos \theta, 0, -\sin \theta) \\ k_2 (0, 1, 0) $	$\frac{2}{3} \left(2r_{51} - r_{23} + r_{13} \right) \sin \theta$
	п, 2	$s_{10}^{2} \theta = \frac{2I_{42} - I_{13} + I_{23}}{3(2I_{42} - I_{23} + I_{23})}$	$(0, \sin \theta, \cos \theta)$	(0, cos θ, — sin θ)	$ k_1 (0, \cos \theta,\sin \theta) \\ k_2 (-1, 0, 0) $	$\frac{2}{3}$ (2 $r_{42} + r_{23} - r_{13}$) sin 0
•	-	-	-	•	•	

6 ВМУ, № 3, физика, астропомия

81

Таблица 2

Модуляция	Продо	льный эффект	Поперечный эффект	
Фазовая	^{Өопт} , ° 55	$U_{\lambda/2}^{\text{M2H}}$, B 900* 650**	^{допт} , ° 40	$U_{\lambda/2}^{\text{MHH}}$, B 630* 970**
По поляризации	57	700* 670**	35	700* 870**

* — одинаковые знаки r_{ik} , ** — знаки r_{13} , r_{23} , r_{33} противоположны знакам r_{42} и r_{51} ; $\lambda = 0,63$ мкм.

угол ξ с плоскостью, проходящей через ось OZ и k₃ (см. рисунок). Вектор напряженности электрического поля может быть записан в виде

 $\mathbf{E} = (\cos \xi \cdot \cos \theta \cdot \cos \varphi + \sin \xi \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi - \mathbf{e}_{01}) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos \xi \cdot \cos \theta \cdot \sin \varphi) \mathbf{e}_{01} + (\cos$

 $-\sin\xi\cdot\cos\varphi)\mathbf{e}_{02}-\cos\xi\cdot\sin\theta\cdot\mathbf{e}_{03}.$

Для кристаллов класса *mm*2 в случае волны света с вектором поляризации k₁

$$(\mathbf{ER}_{1}) = -\sin\theta\{[(2r_{51}+r_{13})\cos^{2}\theta \cdot \cos^{2}\varphi + (2r_{42}+r_{23})\cos^{2}\theta \cdot \sin^{2}\varphi + r_{33}\sin^{2}\theta]\cos\xi + (r_{51}-r_{42})\cos\theta \cdot \sin2\varphi \cdot \sin\xi\}.$$

Одним из оптимальных значений ξ является $\xi = 0$. Нахождение оптимального ненулевого значения ξ в аналитическом виде затруднительно. Для кристаллов с малой двуосностью последний член в (ER₁) мал ввиду близости коэффициентов r_{42} и r_{51} . В этом случае ξ близко к нулю.

Для волны с вектором поляризации \mathbf{k}_2 (ER₂) = sin θ (r_{13} sin² φ + + r_{23} cos² φ). Результаты расчета оптимальных направлений даны в табл. 1. При фазовой модуляции с вектором поляризации \mathbf{k}_2 $r^{\text{опт}}_{9\Phi}$ = = $r_{23}(\theta = \pi/2, \varphi = 0)$ или $r_{13}(\theta = \pi/2, \varphi = \pi/2)$.

Для кристаллов класса 4mm $\xi^{\text{опт}} = 0$, а $\theta^{\text{опт}}$ определяется теми же соотношениями, что и для кристаллов класса mm2 (см. табл. 1), φ произвольно. Для кристалла БСН $\theta^{\text{опт}} = \pi/2$. В случае фазовой модуляции $r_{3\phi}^{\text{опт}} = r_{33}$, для модуляции по поляризации $r_{3\phi} \simeq r_{33}$ и $U_{\lambda/2}^{\text{мин}} \simeq 38$ В.

Таким образом, найдены оптимальные направления продольного и поперечного электрооптических эффектов и соответствующие им полуволновые напряжения для перспективных кристаллов НБН и БСН.

СПИСОК ЛИТЕРАТУРЫ

[1] Парыгин В. Н., Тимершанова Р. С. Квант. электроника, 1974, 1, № 7, с. 1512. [2] Мэзон У. Пьезоэлектрические кристаллы и их применение в ультраакустике. М.: ИЛ, 1952. [3] Гисин Б. В. Квант. электроника, 1971, № 6, с. 136. [4] Парыгин В. Н., Чирков Л. Е. Оптика и спектроскопия, 1975, 38, № 2, с. 322. [5] Singh S., Draegert D. A., Geusic G. E. Phys. Rev. B., 1970, 2, N 7, p. 2709.

Поступила в редакцию 11.06.81