УЛК 530.12

О ТОПОЛОГИИ КОСМОЛОГИЧЕСКИХ МОДЕЛЕЙ ВБЛИЗИ КРИТИЧЕСКИХ ТОЧЕК

Г. А. Сарданашвили, В. П. Янчевский

(кафедра теоретической физики)

Проблема сингулярностей до сих пор продолжает оставаться одной из главных трудностей ОТО. Нас интересует связь сингулярностей гравитационного поля с топологическими свойствами пространства-времени, считающегося в теории гравитации 4-мерным связным ориентируемым многообразием X^4 . Оно метризуемо, и естественно предположить, что X^4 полно и без края.

Гравитационное поле на X^4 определяется как глобальное сечение g расслоения псевдоевклидовых билинейных форм в касательных пространствах к X^4 , необходимым и достаточным условием существования которого является редукция структурной группы касательного расслоения $T(X^4)$ к группе Лоренца и тем самым к ее компактной подгруппе SO(3) [1]. Это означает существование такого атласа Ψ_g расслоения $T(X^4)$, в котором функции перехода между картами сводятся к локальным преобразованиям группы SO(3). В этом атласе поле g во всех точках — это метрика Минковского.

Что понимать под гравитационной сингулярностью? До сих пор по этому поводу нет единого мнения. Сейчас наиболее признано описание сингулярностей гравитационного поля в терминах неполноты его геодезических [2]. Однако такое описание, базирующееся на рассмотрении отдельных геодезических, локально по своей основе, предполагает применение к конкретному гравитационному полю и, в частности, не позволяет выявить общие характеристики гравитационных сингулярностей на данном многообразии и их связь с глобальной топологией пространства-времени. Для исследования топологической картины гравитационной сингулярности ее саму тоже следует определять в топологических терминах.

Для этого воспользуемся тем, что можно установить взаимнооднозначное соответствие гравитационного поля g на многообразии X^4 и слоения T_g коразмерности 1 на X^4 , которое определяется как ортогональное неособому векторному полю τ , образованному в атласе Ψ_g векторами, направленными по времени. Слоями T_g являются пространственноподобные гиперповерхности, и на многообразии X^4 слоение T_g задает структуру пространства-времени, отвечающего гравитационному полю g.

Это ссответствие позволяет описывать свойства гравитационных полей на данном многообразии X^4 как свойства слоений коразмерности 1 на X^4 и определять сингулярность гравитационного поля как особенность соответствующего слоения, т. е. пространственно-временной структуры на X^4 . Количество и характер этих особенностей (они приводят также к неполноте времениподобных геодезических) зависят от топологии многообразия X^4 , что и позволяет в таком подходе исследовать топологические обстоятельства, сопутствующие гравитационным сингулярностям [3]. В частности, топологической характеристикой многообразия X^4 является множество классов Годбийона-Вея слоений коразмерности 1 на X^4 , т. е. когомологических классов замкнутой

3-формы $\Gamma = \Theta \wedge d\Theta$, где 1-форма Θ задается соотношением $d\tau^* = \tau^* \wedge \Theta$ для формы τ^* , дуальной векторному полю τ , которое ортогонально данному слоению T_g [4, 5].

Приведенное определение космологической модели не содержит гравитационных сингулярностей, которые оказываются как бы вырезанными из пространства-времени. Поэтому представляется целесообразным в качестве пространства-времени данной космологической модели рассмотреть пополнение \bar{X}^4 многообразия X^4 как метрического пространства, предполагая, что \bar{X}^4 — многообразие без края. Космологическая модель имеет сингулярность, если на \bar{X}^4 не существует слоения, ограничением которого на X^4 было бы T_g . Такая сингулярность может быть описана критическими точками функции f_T , продолженной на \bar{X}^4 , т. е. точками, где $df_T = 0$. При этом условие инвариантности функции f_T вблизи критических точек относительно группы движений G позволяет делать заключение о типах критических точек функции f_T и, следовательно, о типах сингулярностей, которые могут возникать в однородных космологических моделях того или иного типа по Бианки.

Вблизи критической точки $a \in \overline{X}^4$ функция f координатным преобразованием всегда может быть приведена к каноническому виду

$$f(x) = f(a) + h(x_1, \ldots, x_{j-1}) - x_j^2 - \ldots - x_k^2 + \ldots + x_4^2$$

Критическая точка называется невырожденной точкой индекса k, если j=1. Невырожденные критические точки структурно устойчивы относительно малых изменений вида функции f. Вырожденные точки неустойчивы, и всегда имеются сколь угодно малые возмущения f, при которых они расщепляются на невырожденные. Однако известна классификация вырожденных критических точек, которые устойчивы при возмущениях функции f по конечному (≤ 5) числу параметров [6].

Проверяя инвариантность функции f_T с различными типами критических точек относительно групп движений всех девяти типов однородных космологических моделей, получаем, что только модели VIII и IX типов допускают невырожденные и вырожденные параметрически устойчивые критические точки функции f_T . Сингулярности других космологических моделей оказываются структурно неустойчивыми, например, при малых нарушениях однородности, что, на наш взгляд, уменьщает вероятность описания с их помощью сингулярности Большого взрыва.

В случае, когда слои слоения T_g — замкнутые многообразия, а критические точки f_T невырожденны, т. е. f_T — функция Морса, по индексам этих точек можно восстановить топологию многообразия X^4 в их окрестности [7]. Например, можно показать, что пространство-время закрытой изотропной модели Фридмана, функция Морса f_T которой имеет две критические точки на временном отрезке, — это 4-сфера.

В заключение отметим, что гравитационные модели, в которых пространственно-временное слоение является расслоением, не ограничиваются только однородными космологическими моделями, и многие сингулярности в теории гравитации, по-видимому, могут быть описаны как критические точки функции поверхностей уровня на многообразии X^4 .

СПИСОК ЛИТЕРАТУРЫ

[1] Sardanashvily G. Phys. Lett. 1980, 75A, N 4, p. 257. [2] Хо-кинг С., Эллис Дж. Крупномасштабная структура пространства-времени. М.: Мир, 1978. [3] Сарданашвили Г. А., Янчевский В. П. В кн.: Тезисы докл. Всес. конф. «Современные теоретические и экспериментальные проблемы теории относительности и гравитации.» М.: Изд-во МГУ, 1981, с. 21. [4] Фукс Д. Б. Современные проблемы математики, 1978, 10, с. 179. [5] Тамура И. Топология слоений. М.: Мир, 1979. [6] Арнольд В. И. Успехи матем. наук, 1974, 29, № 2, с. 11. [7] Хирш М. Дифференциальная топология. М.: Мир, 1979.

Поступила в редакцию

ВЕЮТН. МОСК, УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982. Т. 23. № 4

УДК 538.3

О ГЕНЕРАЦИИ ПОВЕРХНОСТНЫХ ВОЛН В ТВЕРДОТЕЛЬНОЙ ПЛАЗМЕ

Л. С. Богданкевич, В. К. Гришин, М. Ф. Каневский (НИИЯФ)

Изучение вопросов генерации СВЧ-излучения в миллиметровой области при взаимодействии релятивистского электронного пучка (РЭП) с плазмой твердого тела представляет значительный интерес. В работах [1, 2] рассматривался вопрос о генерации поверхностных волн при взаимодействии с твердым телом электронных пучков, движущихся в вакууме над поверхностью твердого тела. Такая схема представляется одной из перспективных с практической точки зрения, поскольку здесь основной поток электромагнитной энергии распространяется вне твердого тела в пучковой зоне. Вместе с тем очевидны и трудности реализации подобной схемы. Область локализации поля в пучковой зоне — порядка длины волны, т. е. порядка нескольких миллиметров для рассматриваемого диапазона. Удержание достаточно интенсивного пучка в столь малой зоне связано с решением довольно сложных технических проблем.

Одним из способов, позволяющих значительно улучшить условия транспортировки пучка, является его зарядовая нейтрализация, которая достигается, например, при пропускании пучка через газовую плазму. Следует сказать, что в реальном эксперименте над твердым телом обычно находится остаточный газ, который, ионизуясь пучком, образует газовую плазму. Газовая плазма над поверхностью твердого тела может создаваться и независимо с помощью дополнительного слабого пучка, лазерного луча и т. п., что дает возможность контролировать параметры газовой плазмы.

Поэтому в настоящей работе обсуждается возможность генерации поверхностных волн при распространении РЭП через газовую плазму вблизи твердого тела. Как показывает анализ, эта схема, помимо лучшего соответствия условиям реального эксперимента и возможности нейтрализации заряда пучка, имеет также и другие преимущества: по-