энергии овязи. При дальнейшем увеличении концентрации ПАВ происходит восстановление не первоначального спектра поглощения ассоциатов родамина С (кривая 1), а мономерной полосы поглощения красителя (кривая 4), что и следует ожидать, поскольку дисперсионное: взаимодействие между образующимися комплексами затруднено из-за большого количества ПАВ в растворе.

Описанные изменения спектров поглощения красителей аналогичны их деформациям при введении в растворы высокомолекулярных веществ (эффект метахромазии) [12]. Поэтому развиваемые в настоящей работе представления могут быть применены и для объяснения явления метахромазии.

Таким образом, многообразие изменений спектров поглошения сложных органических веществ, наблюдаемых при увеличении концентрации молекул растворенного вещества, а также при введении различных добавок, объясняется с единых позиций с учетом структуры образующихся в растворе комплексов.

### СПИСОК ЛИТЕРАТУРЫ

[1] Южаков В. Ю. Успехн химин, 1979, 48, № 11, с. 2007. [2] Rac Mc., Kasha M. Physical Processes in Rad. Biol. Acad. Press. N. Y., 1964, р. 23-42. [3] Kasha M. Rad. Res., 1963, 20, р. 55. [4] Kajiwara T., Chambers R. W., Kearns D. R. Chem. Phys. Lett., 1973, 22, р. 37. [5] Kajiwara T., Cham-bers R. W., Kearns D. R. J. Phys. Chem., 1974, 78, р. 380. [6] Левшин Л. В., Рева М. Г., Рыжиков Б. Д. Деп. ВИНИТИ, № 14720-80. [7] Левшин Л. В., Рева М. Г., Рыжиков Б. Д. Журн. прикл. спектроскопии, 1977, 26, № 1, с. 66. [8] Кунавин Н. И., Нурмухаметов Р. Н., Хачатурова Г. Т. Журн. прикл. спектроскопии, 1977, 26, № 6, с. 1023. [9] Тіпосо Ј. J. Amer. Chem. Soc., 1960, 82, р. 4785. [10] Rhodes W. J. Amer. Chem. Soc., 1961, 83, р. 3609. [11] Рева М. Г., Рыжиков Б. Д., Сенаторова Н. Р. Вестн. Моск. ун-та, Сер. Физ. Астрон., 1980, 21, № 3, с. 63. [12] Левшин Л. В., Славнова Т. Д. и др. Журн. прикл. спектроскопии, 1973, 18, № 3, с. 416.

Поступила в редакцию. 14.11.80

ВЕСТН. МОСК, УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23, № 5

### УДК 533.951

о гидродинамическом описании волн в горячея РЕЛЯТИВИСТСКОЙ ПЛАЗМЕ

#### Л. С. Кузьменков, П. А. Поляков, П. Б. Подосенов

(кафедра теоретической физики)

Одна из попыток построения релятивистской гидродинамической теории волн в релятивистской плазме была предпринята в работе [1]. В этой работе предполагалось, что плотность тензора энергии-импульса частиц Т<sup>*ij*</sup> представима в виде [2]

$$T^{ij} = (\varepsilon + p)\tau^i \tau^j - g^{ij} p. \tag{1}$$

В работе [3] были получены уравнения релятивистской гидродинамики на основе локального максвелловского распределения частиц плазмы, для которого тензор энергии-импульса также представим в виде (1). Однако, как будет показано ниже, это хорошо известное представление тензора T<sup>ij</sup> несправедливо для плазмы при наличии в ней волн и приводит к принципиальному расхождению с кинетической теорией.

Вместе с тем использование при определении и разбиении тензора энергии-импульса статистических представлений и предположения об идеальности плазмы позволяет получить результаты, согласующиеся с кинетической теорией, а также ряд новых результатов, которые проще могут быть получены с помощью гндродинамических уравнений.

Выведем основные уравнения двухжидкостной релятивистской гидродинамики с помощью релятивистского уравнения Власова [4]

$$u^{i} \frac{{}^{k}\partial f_{a}}{\partial x^{i}} - \frac{1}{m_{a}c} \frac{\partial}{\partial u^{k}} \left[ \left( \frac{{}^{r}e_{a}}{c} F^{ki}u_{i} + g^{k}_{a} \right) f_{a} \right] = 0, \qquad (2)$$

где

$$g_{a}^{k} = \frac{2}{3} \frac{e_{a}^{3}}{m_{a}c^{3}} \frac{\partial F^{ki}}{\partial x^{n}} u_{i}u^{n} - \frac{2}{3} \frac{e_{a}^{4}}{m_{a}^{2}c^{5}} F^{ki}F_{ni}u^{n} + \frac{2}{3} \frac{e_{a}^{4}}{m_{a}^{2}c^{5}} (F_{nm}u^{m}) (F^{ni}u_{i}) u^{k},$$

$$f_{a} = f_{a} (x^{i}, u^{\beta}) 2\theta (u^{0}) \delta (u_{n}u^{n} - 1), \qquad (3)$$

 $u^i$  — 4-вектор скорости,  $\theta(u^0)$  — функция Хевисайда. Индекс *а* нумерует сорт частиц, латинские индексы принимают значения 0, 1, 2, 3, а греческие — 1, 2, 3. Интегрируя уравнение (2) с весами 1 и  $u^i$ , получим

$$\frac{\partial}{\partial x^{i}} (\mathbf{v}_{a} \mathbf{\tau}_{a}^{i}) = 0, \qquad (4)$$

$$\frac{\partial}{\partial x^{i}}T_{a}^{ik} = v_{a}e_{a}F_{i}^{k}\tau_{a}^{i} + c\mathcal{F}_{rad}^{k}, \qquad (5)$$

где т<sup>*i*</sup> — 4-вектор гидродинамической скорости;

$$\boldsymbol{\tau}^{\prime} = \int u^{\prime} f_{a} d\Omega / \boldsymbol{v}_{a}, \quad \left( d\Omega = \frac{d^{3}u}{u_{0}}, \quad \boldsymbol{\tau}^{\prime}_{a} \boldsymbol{\tau}_{ai} = 1 \right), \tag{6}$$

v<sub>a</sub> — инвариантная плотность частиц сорта а,

$$T_a^{ij} = m_a c^2 \int u^i u^j f_a d\Omega, \qquad (7)$$

 $\mathcal{F}^k_{rad}$  — среднее значение радиационной силы:

$$\mathcal{F}_{\rm rad}^{0} = -\int g_{a}^{\alpha} \frac{u_{\alpha}}{u_{0}} f_{a} d\Omega, \ \mathcal{F}_{\rm rad}^{\beta} = \int g_{a}^{\beta} f_{a} d\Omega.$$
(8)

Система моментных уравнений (4), (5) является незамкнутой. Для ее замыкания тензор энергии-импульса обычно представляют в виде (1). Исследуем теперь, при каких условиях это предположение справедливо. Для этого без ограничения общности будем считать, что в нашей системе отсчета имеются потоки только вдоль координатной оси x, т. е. все недиагональные компоненты тензора (7), кроме  $T^{01}$ , равны нулю. Перейдем теперь в систему отсчета S', в которой отсутствует поток частиц, т. е.  $\tau^{1'} = 0$ . Используя преобразования Лоренца [2], можно найти связь компонент тензора энергии-импульса с компонентами  $T^{ij}$  этого тензора в системе S':

$$T^{00} = (\varepsilon + p) \tau^{0} \tau^{0} - p + 2\tau^{0} \tau^{1} mc^{2} \int u^{0'} u^{1'} f' d\Omega',$$
  

$$T^{11} = (\varepsilon + p) \tau^{1} \tau^{1} + p + 2\tau^{0} \tau^{1} mc^{2} \int u^{0'} u^{1'} f' d\Omega',$$
  

$$T^{01} = T^{10} = (\varepsilon + p) \tau^{0} \tau^{1} + (\tau^{0} \tau^{0} + \tau^{1} \tau^{1}) mc^{2} \int u^{0'} u^{1'} f' d\Omega',$$
  

$$T^{22} = T^{22'}, \ T^{33} = T^{38'},$$
  
(9)

13

где  $p = n\Theta$ ,

$$\varepsilon = mc^{3} \int u^{0'} f' d^{3}u',$$
  

$$n\Theta = \int u^{1'} u^{1'} f' d^{3}u', \quad n(x) = \int f' d^{3}u'.$$
(10)

Формулы (10) являются статистическими определениями соответственно давления, внутренней энергии, температуры, плотности числа частиц [5]. Соотношения (9) совпадают с (1) только в том случае, если поток импульса в системе S' равен нулю, т. е.

$$mc^{a}\int u^{0'}u^{1'}f'd\Omega'=0.$$
<sup>(11)</sup>

Однако при условни  $\tau^{1'} = 0$  равенство (11), вообще говоря, не выполняется для функций f', не являющихся симметричными. В этом случае представление тензора энергии-импульса в виде (1) несправедливо.

В частности, при распространении гармонической волны в плазмевозмущенная функция распределения согласно кинетическому уравнению Власова (2) будет иметь вид [6]

$$\delta f_a = -\frac{1}{m_a c} \frac{\partial}{\partial u^k} \left[ \left( \frac{e_a}{c} F^{kj} u_i + g^k_a \right) f_{a(0)} \right] \frac{1}{i k_j u^j},$$

из которого следует, что если стационарное распределение f<sub>a(0)</sub> симметрично, то δf<sub>a</sub> не будет симметричной функцией.

Таким образом, гидродинамическая теория волн в плазме, основанная на предположении (1), может приводить к ошибочным результатам.

Рассмотрим теперь вопрос о замыкании системы уравнений (4), (5) совместно с уравнениями Максвелла. Для этого из тензора энергии-импульса выделим тензор давления [7]

$$P^{\alpha\beta} = mc \int \left( u^{\alpha} - \frac{\mathcal{S}^{\alpha}}{mc} \right) \left( V^{\beta} - v_{\underline{z}}^{\beta} \right) f d^{3}u, \qquad (12)$$

где  $\mathcal{P}^{\alpha}$  — средний поток импульса частиц:

$$\mathscr{F}^{\alpha} = mc \int u^{\alpha} f d^{3} u/n(x), \ \frac{V^{\beta}}{c} = -\frac{u^{\beta}}{u^{0}}, \ \frac{v^{\beta}}{c} = -\frac{\tau^{\beta}}{\tau^{0}}.$$
(13)

Тогда пространственные компоненты тензора (7) принимают вид

$$T^{\alpha\beta} = \mathbf{v}c\mathscr{P}^{\alpha}\tau^{\beta} + P^{\alpha\beta}. \tag{14}$$

Предположим, что тензор давления симметричен. Тогда  $\mathscr{P}^1/\tau^1 = \mathscr{P}^2/\tau^2 = \mathscr{P}^3/\tau^3$ . Ковариантным обобщением этого условия являются равенства  $\mathscr{P}^1/\tau^1 = \mathscr{P}^2/\tau^2 = \mathscr{P}^3/\tau^3 = \mathscr{P}^0/\tau^0$ . Тогда  $T^{0i} = \nu c \mathscr{P}^0 \tau^i$ ,  $T^{i0} = \nu c \mathscr{P}^i \tau^0$ . Далее, как и в нерелятивистской теории, предположим, что плазма — это идеальная жидкость, т. е.  $P^{\alpha\beta} = \rho \delta^{\alpha\beta}$ . Тогда система уравнений гидродинамики совместно с уравнениями Максвелла [2] будет иметь вид

$$\frac{\partial}{\partial x^{i}} (\mathbf{v}_{a} \mathbf{\tau}_{a}^{j}) = 0,$$

$$\frac{\partial}{\partial x^{i}} [\mathbf{v}_{a} c \mathscr{F}_{a}^{j} \mathbf{\tau}_{a}^{k} + P^{ik}] = \mathbf{v}_{a} e_{a} F_{i}^{k} \mathbf{\tau}_{a}^{i} + c \mathscr{F}_{rad}^{k},$$

$$F_{ki} = \frac{\partial A_{i}}{\partial \mathbf{x}^{k}} - \frac{\partial A_{k}}{\partial \mathbf{x}^{i}},$$
(15)

14

 $\frac{\partial^2 A^i}{\partial x_k \partial x^k} = 4\pi e_a v_a \tau_a^i.$ 

Линеаризуем систему уравнений (15), пренебрегая возмущениями ионов и считая электронно-ионную плазму квазинейтральной. Полагаем

$$au_1^i = au_{(0)}^i + au^i, \ p_1 = p_{(0)} + p, \ \mathscr{F}_1^i = \mathscr{F}_{(0)}^i + \mathscr{F}^i, \ \mathbf{v}_1 = \mathbf{v}_{(0)} + \mathbf{v},$$

где индексом 0 обозначены равновесные значения величин, а  $\tau^i$ , p,  $\mathscr{P}^i$ ,  $\nu$  — их возмущенные значения. Тогда из (15) имеем, считая, что все возмущенные величины пропорциональны

$$\exp\left(-ik_{i}x^{i}\right), \ \tau_{(0)}^{i} = \{1, 0, 0, 0\}, \ \mathscr{P}_{(0)}^{i} = \{\mathscr{P}_{(0)}^{0}, 0, 0, 0\}$$

и известно уравнение состояния процесса p = p(n), а также полагая, что волны распространяются вдоль оси x,  $k^i = \{k^0, k^1, 0, 0\}$ ,

$$\Lambda_{\sigma\mu}A^{\mu} = 0. \tag{16}$$

Здесь

an e t

$$\Lambda_{\sigma\mu} = -\delta_{\sigma\mu}k_{0} \left[ \frac{4\pi e^{2} v_{(0)}}{k_{n}k^{n}} \left( 1 - i \frac{2}{3} r_{0}k_{0} \frac{\varepsilon}{mc^{2}} \right) - \varepsilon \right] + a_{\sigma\mu} + \frac{k_{0}k_{\mu}}{k_{0}} \left[ \frac{4\pi e^{2} v_{(0)}}{k_{n}k^{n}} \left( 1 - i \frac{2}{3} r_{0}k_{0} \frac{\varepsilon}{mc^{2}} \right) - \frac{\partial \rho}{\partial n} \right],$$
(17)

\_<u>0</u>\_\_

$$a_{2,3\mu} = -\delta_{2,3\mu} \frac{4\pi e}{k^n k_n} i \frac{2}{3} \frac{e^3}{m^2 c^4} p_0 k^1 k_1.$$

Из условия разрешимости уравнения (16) имеем дисперсионное уравнение

$$\det\left(\Lambda_{\mu\sigma}\right) = 0. \tag{18}$$

Обозначая  $\omega + i\gamma = ck_0$ ,  $k = k_1$ ,  $\varepsilon = c\mathcal{P}_0$ , из уравнения (18) получаем следующее выражение для частоты колебаний и декремента затухания ленгмюровских волн:

$$\omega^2 = \omega_p^2 \frac{mc^2}{\varepsilon} + \frac{1}{\varepsilon} \frac{\partial p}{\partial n} k^2 c^2, \qquad (19)$$

$$\gamma = -\frac{1}{3} \frac{r_0}{c} \omega_p^2, \qquad (20)$$

и для электромагнитных волн

$$\omega^2 = k^2 c^2 + \omega_p^2 m c^2 / \epsilon, \qquad (21)$$

$$\gamma = -\frac{1}{3} \frac{r_0}{c} \omega_p^2 \left( 1 + \frac{\Theta}{\epsilon} \frac{k^2 c^2}{k^2 c^2 + \omega_p^2 m c^2 / \epsilon} \right).$$
(22)

Предположим, что зависимость давления от плотности представима в виде

$$p = \operatorname{const} \cdot n^{\Gamma}, \tag{23}$$

а в равновесии частицы распределены согласно релятивистскому зако-

.45

ну Максвелла. Тогда для средней энергии частиц плазмы можно записать

$$\varepsilon = mc^2 \left[ K_3 \left( \frac{mc^3}{\Theta} \right) / K_2 \left( \frac{mc^3}{\Theta} \right) - \frac{\Theta}{mc^3} \right].$$
 (24)

С учетом (23) и (10) соотношение (19) примет вид

$$\omega^2 = \omega_p^2 m c^2 / \varepsilon + \Gamma k^2 c^2 \Theta / \varepsilon.$$
(25)

В нерелятивистском приближении из (24), (25) получим

$$\omega^2 = \omega_p^2 + \Gamma \Theta k^2 / m. \tag{26}$$

Из сравнения с известной дисперсионной формулой для ленгмюровских волн в нерелятивистской плазме [8] находим, что  $\Gamma = 3$ . В ультрарелятивистском приближении из (24), (25) и для  $\Gamma = 3$  находим

$$\omega^2 = \omega_p^2 m c^2 / 3\Theta + k^2 c^2. \tag{27}$$

Из формулы (27) видно, что при ультрарелятивистских температурах дисперсионное уравнение для ленгмюровских волн совпадает с дисперсионным уравнением электромагнитных волн в вакууме. Этот вывод согласуется с аналогичным результатом Силина [8], полученным на основании строгой кинетической теории.

Для длинных волн дисперсионное уравнение согласно (25) примет вид  $\omega^2 = \omega_p^2 m c^2/3\Theta$ . Эта формула справедлива при любых уравнениях состояния и совпадает с аналогичной формулой Силина [8].

В работе [1], где используется тензор энергии-импульса в виде (1), соответствующая дисперсионная формула для длинных ленгмюровских волн не зависит от уравнения состояния плазмы и имеет вид  $\omega^2 = \omega_p^2 mc^2/4\Theta$ , что находится в принципиальном противоречии с кинетической теорией.

Уравнение состояния (23) с  $\Gamma=3$  правильно описывает дисперсию ленгмюровских волн как в нерелятивистской плазме, так и в ультрарелятивистской. Однако если в нерелятивистском пределе этот процесс соответствует одномерному адиабатическому сжатию, то в ультрарелятивистской плазме он не является адиабатическим.

Что касается дисперсии электромагнитных волн, то формула (21) для ультрарелятивистской плазмы ( $\Theta \rightarrow \infty$ ) также согласуется (в отличие от следствия работы [1]) с результатами кинетической теории [8].

Укажем, что декремент радиационного затухания как электромагнитных, так и ленгмюровских волн (20), (22) в нерелятивистском пределе согласуется с аналогичными формулами, полученными в работе [6].

Декремент затухания ленгмюровских волн в гидродинамическом приближении не зависит от температуры плазмы, несмотря на учет давления, и совпадает с декрементом радиационного затухания ленгмюровских волн в холодной плазме.

Декремент затухания электромагнитных волн зависит от температуры электронов плазмы и, в частности, в ультрарелятивистском пределе, согласно (22), равен  $\gamma = -4r_0 \omega_p^2/9c$ , т. е. радиационное затухание электромагнитных волн в ультрарелятивистской плазме в 4/3 раза больше, чем их радиационное затухание в нерелятивистской плазме.

## СПИСОК ЛИТЕРАТУРЫ

[1] Нуип S., Кеппеl C. F. J. Plasma Phys., 1978, 20, N 2, р. 281. [2] Лан-дау Л. Д., Лифшиц Е. М. Теория поля. М.: Наука, 1967, с. 28—118. [3] К wok-Кее Тат, Кіапд David. Progr. of Theor. Phys., 1979, 62, N 5, р. 1245. [4] Кузьменков Л. С. ДАН СССР, 1978, 241, № 2, с. 322. [5] Кузьмен-ков Л. С., Поляков П. А. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1977, 18, № 1, с. 94. [6] Кузьменков Л. С., Поляков П. А. Изв. вузов. Сер. Физика, 1980, № 4, с. 16. [7] Дэвидсон Р. Теория заряженной плазмы. М.: Мир. 1978, с. 28. [8] Силин В. П., Рухадзе А. А. Электромагнитные свойства плазмы и плазмопо-лобных спел. М.: Госатомизарт. 1961. с. 95. добных сред. М.: Госатомиздат, 1961, с. 95.

Поступила в редакцию 11.12.80

ВЕСТН. МОСК. УН-ТА. СЕР. З. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23. № 5

### УДК 53:51

# О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ПРОЦЕССА НАГРЕВА ДЛИННЫХ СТАЛЬНЫХ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ ПОД ЗАКАЛКУ В ИНДУКТОРЕ С ПОПЕРЕЧНЫМ МАГНИТНЫМ ПОЛЕМ

### В. Б. Гласко, М. К. Трубецков

(кафедра математики)

1. Математическое моделирование физических процессов является эффективным средством для изучения возможностей новых инженерных конструкций.

Поскольку количественные характеристики факторов, обусловливающих процессы, обычно неизвестны и подлежат определению в за-

висимости от предъявляемых к системе требований, соответствующие модели содержат элементы обратных задач. Тем самым решение проблемы моделирования неизбежно опирается на концепции теории регуляризации [1]. Так как далее операторы, опредеэффект работы желаемый ляюшие системы, часто задаются дифференциальными соотношениями, их вычисление проводится с помощью разностных схем [2].

В настоящей работе на указанной основе в рамках выбранной модели рассматривается ранее не подвергав.

шийся математическому изучению процесс нагрева под закалку длинных стальных образцов цилиндрической формы в индукторе специальной конструкции [3].

2. На рис. 1 изображено поперечное сечение рассматриваемой конструкции. Будем считать, что толщиной шин индуктора и распределением плотности тока в них можно пренебречь в рамках рассматриваемой задачи и поэтому аппроксимируем индуктор бесконечно тонкими лентами ширины L. В этих лентах течет электрический ток противоположных направлений  $\tilde{I} = I(t) e^{i\omega t}$ , где I(t) — медленно меняющаяся со временем амплитуда; ток порождает электромагнитное поле, проникающее в глубь образца, и индуцированные токи Фуко приводят к нагреву. Образец вращается вокруг своей оси с угловой частотой Ω, так что область высоких температур «размазывается» некоторым образом по поверхности образца.



17



Рис. 1. Геометрическая конфигура-