СПИСОК ЛИТЕРАТУРЫ

[1] Нуип S., Кеппеl C. F. J. Plasma Phys., 1978, 20, N 2, р. 281. [2] Лан-дау Л. Д., Лифшиц Е. М. Теория поля. М.: Наука, 1967, с. 28—118. [3] К wok-Кее Тат, Кіапд David. Progr. of Theor. Phys., 1979, 62, N 5, р. 1245. [4] Кузьменков Л. С. ДАН СССР, 1978, 241, № 2, с. 322. [5] Кузьмен-ков Л. С., Поляков П. А. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1977, 18, № 1, с. 94. [6] Кузьменков Л. С., Поляков П. А. Изв. вузов. Сер. Физика, 1980, № 4, с. 16. [7] Дэвидсон Р. Теория заряженной плазмы. М.: Мир. 1978, с. 28. [8] Силин В. П., Рухадзе А. А. Электромагнитные свойства плазмы и плазмопо-лобных спел. М.: Госатомизарт. 1961. с. 95. добных сред. М.: Госатомиздат, 1961, с. 95.

Поступила в редакцию 11.12.80

ВЕСТН. МОСК. УН-ТА. СЕР. З. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23. № 5

УДК 53:51

О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ПРОЦЕССА НАГРЕВА ДЛИННЫХ СТАЛЬНЫХ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ ПОД ЗАКАЛКУ В ИНДУКТОРЕ С ПОПЕРЕЧНЫМ МАГНИТНЫМ ПОЛЕМ

В. Б. Гласко, М. К. Трубецков

(кафедра математики)

1. Математическое моделирование физических процессов является эффективным средством для изучения возможностей новых инженерных конструкций.

Поскольку количественные характеристики факторов, обусловливающих процессы, обычно неизвестны и подлежат определению в за-

висимости от предъявляемых к системе требований, соответствующие модели содержат элементы обратных задач. Тем самым решение проблемы моделирования неизбежно опирается на концепции теории регуляризации [1]. Так как далее операторы, опредеэффект работы желаемый ляюшие системы, часто задаются дифференциальными соотношениями, их вычисление проводится с помощью разностных схем [2].

В настоящей работе на указанной основе в рамках выбранной модели рассматривается ранее не подвергав.

шийся математическому изучению процесс нагрева под закалку длинных стальных образцов цилиндрической формы в индукторе специальной конструкции [3].

2. На рис. 1 изображено поперечное сечение рассматриваемой конструкции. Будем считать, что толщиной шин индуктора и распределением плотности тока в них можно пренебречь в рамках рассматриваемой задачи и поэтому аппроксимируем индуктор бесконечно тонкими лентами ширины L. В этих лентах течет электрический ток противоположных направлений $\tilde{I} = I(t) e^{i\omega t}$, где I(t) — медленно меняющаяся со временем амплитуда; ток порождает электромагнитное поле, проникающее в глубь образца, и индуцированные токи Фуко приводят к нагреву. Образец вращается вокруг своей оси с угловой частотой Ω, так что область высоких температур «размазывается» некоторым образом по поверхности образца.

17

Рис. 1. Геометрическая конфигура-

В дальнейшем, учитывая то, что длина цилиндра много больше радиуса, будем рассматривать пространственно-двумерную задачу в системе координат вращающегося цилиндра. Тогда температурное поле $u = u(r, \varphi, t)$ при заданной плотности тока описывается следующей краевой задачей для нелинейного уравнения теплопроводности:

$$\begin{cases} c(u) \rho(u) \frac{\partial u}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(rk(u) \frac{\partial u}{\partial r} \right) + \\ + \frac{1}{r^{s}} \frac{\partial}{\partial \varphi} \left(k(u) \frac{\partial u}{\partial \varphi} \right) + q(u, r, \varphi, I(t)), \\ \lim_{r \to 0} rk(u) \frac{\partial u}{\partial r} = 0; - k(u) \frac{\partial u}{\partial r} \Big|_{r=R} = \\ = \varkappa (u) \Big|_{r=R}^{r=R} - u_{0}; u \Big|_{t=0} = u_{0} = \text{const.} \end{cases}$$
(1)

Здесь q — плотность индуцированных тепловых источников, осредненная по периоду $T = 2\pi/\omega$:

$$q(u, r, \varphi, I(t)) = 0,12\lambda(u) | E(u, r, \varphi, I(t))|^{2},$$
(2)

E — медленно меняющаяся амплитуда единственной, параллельной оси цилиндра компоненты электрического поля. На рис. 2 представлены графики зависимостей k(u), $\rho(u)$, c(u), $\lambda(u)$, $\mu(u)$ по эксперимен-

Рис. 2. Графики зависимостей характеристик стали марки 40 от температуры: удельной проводимости $\lambda(u)$, плотности $\rho(u)$, теплоем-кости c(u), теплопроводности k(u), относительной магнитной проницаемости $\mu(u)$

Рис. 3. Функция *у*(θ) при заданных параметрах конструкции

тальным данным [4]. Первые две из указанных величин аппроксимировались нами по методу наименьших квадратов (k(u) - полиномом 4-й степени, $\rho(u) - полиномом 1$ -й степени), тогда как остальные рассчитывались путем кусочно-линейной интерполяции.

Амплитуда электрического поля E описывается уравнениями Максвелла (без учета токов смещения и без токов проводимости вне образца) с условиями сопряжения на границе r = R и условием ограниченности решения при $r \rightarrow 0$ и при $r \rightarrow \infty$. Коэффициенты этого уравнения зависят от u, однако, как показано в работах [5, 6], для заданных характеристик материала можно без значительной потери точности при расчете температурных полей ограничиться «локально-стационарным» приближением уравнений Максвелла, где температура u рассматривается как параметр. Воспользовавшись приближением хорошо проводящего образца $E|_{r=R=0} \to 0$ при $\lambda \to \infty$, можно исключить поле E при r > R. Таким образом, условия сопряжения заменяются граничным условнем II рода:

$$R \frac{\partial E}{\partial r}\Big|_{r=R,-0} = \mu(u) y_2(\theta) I(t), \ \theta = \varphi - \Omega t,$$
(3)

где $y(\theta)$ — известная функция, которую достаточно рассчитать однажды при помощи квадратур для E_0 — поля, возбуждаемого индуктором в отсутствие образца, и процедур быстрого прямого и обратного преобразований Фурье; представление о функции $y(\theta)$ можно получить из рис. 3.

Решение задачи о нахождении поля *E*, зависящего от I(t), может быть представлено явно в виде разложения по системе функций $\{J_m (V - i \, \alpha \, r) \, e^{im\theta}\}, \, \alpha = \alpha \, (u) = V \, \mu \, (u) \, \mu_0 \, \lambda \, (u) \, \omega$. Если воспользоваться асимптотикой функций Бесселя по параметру $\alpha R \gg 1$, и учесть их приповерхностную локализацию, то можно применить следующее выражение для осредненной плотности тепловых источников в (1):

$$q = \begin{cases} \frac{0, 12 \lambda(u) \mu^{2}(u) y^{2}(\theta)}{rR a^{3}(u)} I^{2}(t) e^{\sqrt{2} \alpha(u)(r-R)}, & r > \frac{1}{\sqrt{2} a}, \\ 0, \frac{\pi}{3} & r \ll \frac{1}{\sqrt{2} a}. \end{cases}$$
(4)

Таким образом, завершена формулировка модели процесса нагрева при заданной I(t). Значения $u(r, \varphi, t)$, определяемые задачей $(1) \mapsto$ (4), вычислялись с помощью разностной схемы переменных направлений [2]. Для каждого перехода с t_k на $t_{k+1/2}$ и с $t_{k+1/2}$ на t_{k+1} вводился итерационный цикл, подобный использованному в работе [5], который необходим для решения нелинейной задачи; поиск решения линеаризованных уравнений проводился методом прогонки (циклической по φ).

Обозначим через $A(t, I(t)) = u(R, \varphi, t)$ при заданной функции I(t) оператор, вычисляемый по указанной схеме [2, 5].

3. Формулируем обратную задачу — об определении I(t) по некоторой информации о температурном поле, т. е. об управлении полем по некоторым заданным условиям.

Процесс нагрева под закалку проводится в две стадии.

На первой стадии (задача *a*) требуется найти постоянную силу тока $I(t) = I_{\rm H} = {\rm const}$, такую, чтобы при заданном времени нагрева $t_{\rm H}$ средняя температура поверхности достигала заданной величины $u_{\rm H}$ (стадия нагрева).

На второй стадин (задача б) требуется найти некоторую кусочнопостоянную функцию $I(t) = \{I_k\}, k=1, 2, ..., n, с минимальным числом$ «звеньев», при этом средняя температура поверхности образца долж $на оставаться на заданном интервале <math>(t_{\rm H}, \hat{t}_{\rm H})$ постоянной $(\sim u_{\rm H})$ в пределах некоторого допустимого отклонения δ (стадия изотермической выдержки):

$$\rho^{2}(u_{H}, u) = \int_{t_{H}}^{\hat{t}_{H}} (\overline{u}(t) - u_{H})^{2} dt \leqslant \delta^{2}.$$

19

Под средней температурой поверхности понимается функция

$$\overline{u}(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} u(R, \varphi, t) d\varphi.$$

4. Задача *а* формулируется в виде конечного уравнения $u_{\rm H} = = f(I) \equiv A(t_{\rm H}, I)$ относительно *I* с неявно заданной, но вычислимой согласно п. 2 правой частью. По выражению для *q* можно предположить, что зависимость f(I) близка к монотонной квадратичной (что согласуется с действительностью). Поэтому для решения последнего уравнения использовался метод хорд. Исходные данные для него $I^{(1)}$ и $I^{(0)}$ определялись специальным итерационным процессом

$$I^{(p+1)} = \frac{I^{(p)}}{2} \left(1 + \frac{u_{\rm B} - f(0)}{f(I^{(p)}) - f(0)} \right)$$
(5)

при произвольном (например, по порядку величины) выборе начального приближения I⁽⁰⁾. Этот алгоритм оказался вполне эффективным.

Задача б может быть решена в два этапа. Вначале определяется некоторая $I(t) = \{I_k\}$ без специального соблюдения условия минимальности числа звеньев, т. е. при априорном, достаточно мелком разбиении сегмента $[t_n, \hat{t}_n]$ на частные $\Delta_k = [t_{k-1}, t_k], k = 1, 2, ..., n$, при этом, как и в работах [5, 6], ищется функция, близкая к непрерывной.

В качестве алгоритма поиска I при каждом k, в отличие от использованного в работе [6], предлагается оказавшийся более эконо-2π

мичным алгоритм (5), где
$$f(I) = \frac{1}{2\pi} \int_{0}^{\infty} A(t_k, I) d\varphi$$
. В соответствии с

условиями [5-6] $I^{(0)} = I_{k-1}$, и процесс заканчивается по условию $\rho_k \ll \delta_k$.

Обратимся ко второму этапу.

5. На этом этапе решается задача аппроксимации в равномерной метрике $\rho(I, I)$ «непрерывной» функции $I(t), t \in [t_{\rm H}, t_{\rm H}]$ кусочно-постоянной I, но уже с минимальным числом звеньев, так, чтобы $\rho(I,I) < \varepsilon$ при заданном ε . При этом проверяется соблюдение условия близостисредней температуры поверхности к заданной константе.

Предлагаемый для этого алгоритм напоминает конструкцию Лебега для интеграла [7] и формулируется следующим образом. Для каждого *m* множество значений *l*(*t*) разбивается равномерной сеткой на сегменты

$$Y_{I} = [I_{i,-1}, I_{i}], \ j = 1, 2, \dots, m,$$
$$I_{0} = \min_{[t_{R}, \hat{t}_{R}]} I(t), \ I_{m} = \max_{[t_{R'}, \hat{t}_{R}]} I(t).$$

Каждому γ_i отвечает множество сегментов оси t: $\{\Delta_{ij}^m\} \equiv \varkappa_i^m$, таких, что $I(t) \equiv \gamma_i$ при $t \equiv \varkappa_i^m$. Рассчитаем для каждого \varkappa_i^m среднее для этого множества значение I(t): $\hat{I}_i = (I_{i-1} + I_i)/2$ и, обозначив через χ_i^m характеристическую функцию множества \varkappa_i^m , получим выражение для искомой $\hat{I} = \sum_{j=1}^m \bar{I}_j \chi_i^m$, которое и примем за приближенное решение поставленной задачи для данного m. Описанные выше действия проделываются для m=2, 3, ... до тех пор, пока не выполнится условие $\rho(I, I) < \varepsilon$. Проверка выполнения условия аппроксимации температуры для функций *1*, полученных при различных *m*, производится в рамках решения прямой задачи и потому достаточно экономична.

6. Обратимся к некоторым результатам расчетов с помощью рассмотренных алгоритмов.

Приведенные ниже результаты отвечают следующим значениям физических параметров: R=24 мм, a=27 мм, L=28 мм, $\omega/2\pi=2,5$ кГц,

Рнс. 4. Зависимость силы тока от времени

В результате решения задачи а при $t_{\rm H}{=}27$ с, $u_{\rm H}{=}870^{\circ}{\rm C}$ было получено значение $I_{\rm H}{=}8670$ А, что близко к применяемым на практике величинам.

На рис. 4 представлена наряду со значением *I*_н «непрерывная» функция

 $\Omega/2\pi = 0.5$ Гц. При аппроксимации было выбрано $\varepsilon = 600$ А, чему соответствовало m = 4.

Рис. 5. Зависимости максимальной (1), средней (2), минимальной (3) температур поверхности образца от времени; кривая (4) — зависимость средней температуры от времени при r=17,3 мм, кривая (5) — в центре образца; крестиками отмечено поведение средней температуры поверхности при замене I(t) на $\widehat{I}(t)$

I (t), найденная на первом этапе решения задачи б. Соответствующее ей среднее, а также минимальное и максимальное значение температуры поверхности даны на рис. 5. Отклонения температуры от средней величины не превосходят ~ 20°С к моменту $t_{\rm H}$ и ~ 3—4°С к моменту $t_{\rm H}$.

На том же рис. 5 представлены средние значения температуры для приближения $\widehat{I}(t)$, найденного на втором этапе при m=4, которое также «укладывается» в допустимые пределы. Соответствующий этому приближению режим переключения тока показан на рис. 4 ступенчатой фигурой.

Таким образом, основанные на концепции регуляризации алгоритмы позволяют решать задачу о выборе режима управления током с целью получения нужного поведения температурного поля при нагреве под закалку.

Настоящая работа инициирована сотрудничеством с АвтоЗИЛ. Авторы выражают благодарность акад. А. Н. Тихонову, начальнику отдела ЗИЛ И. Н. Шклярову и Н. И. Кулик за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. [2] Самарский А. А. Теория разностных схем. М.: Наука, 1977. [3] Богданов В. Н., Рыскин С. Е. Применение сквозного индукционного нагрева в промышленности. М.—Л.: Машиностроение, 1965. [4] Теплофизические свойства веществ. / Под ред. Н. Б. Варгафтика. М.—Л., Госэнергоиздат, 1956. [5] Гласко В. Б., Кулик Н. И. и др. ЖВМ и МФ, 1979. 9, № 3, с. 768. [6] Гласко В. Б., Кулик Н. И., и др. ЖВМ и МФ, 1979. 9, № 3, с. 768. [6] Гласко В. Б., Кулик Н. И., Шкляров И. Н. Вестн. Моск. ун-та. Сер. Выч. матем. и кибернетика, 1978, № 1, с. 36. [7] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1972.

Поступила в редакцию 12.12.80

ВЕСТН, МОСК, УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23, № 5

УДК 539.2.01:537.312.62

О ХАРАКТЕРЕ ФАЗОВЫХ ПЕРЕХОДОВ В СОЕДИНЕНИЯХ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

А. В. Ведяев, М. А. Савченко, Л. В. Панина

(кафедра магнетизма)

Введение. В последнее время проводятся исследования соединений типа Er_{1-x}Ho_xRh₄B₄. В работе [1] приводится экспериментальная фазовая диаграмма таких соединений (рис. 1), наиболее характерной чертой которой является наличие критической концентрации. Пока еще экспериментально не установлено, есть ли в квазитройных соединениях фаза сосуществования сверхпроводимости и магнетизма. Однако

Рис. 2. Теоретическая фазовая диаграмма соединений типа ${\rm Er}_{1-x}{\rm Ho}_x{\rm Rh}_4{\rm B}_4$: фазы скошенной (*TS*) и нормальной (*NS*) спирали, сверхдроводимости (*Su*), парэмагнетизма (*P*); волна спиновой плотности (*c* — sin)

сравнение экспериментов по измерению магнитной восприимчивости и теплоемкости для соединения ErRh₄B₄ приводит к выводу о наличии такой фазы в узкой области температур ($\Delta T \approx 0.05$ K) [2, 3].

Флуктуационная теория фазовых переходов в соединениях типа Er_{1-x}Ho_xRh₄B₄ была развита в работах [4—6]. Авторы построили фазовую диаграмму в переменных температура — анизотропия (рис. 2).

Мы исследуем сверхпроводящее состояние и полученную теоретически в [4—6] фазу сосуществования сверхпроводимости и магнетизма и покажем, что учет магнитных флуктуаций приводит к вихревой