диффузионных процессов так, как это сделано в настоящей статье, либо, используя соотношение (4), подобрать такую толщину образца, при которой обеспечивается равномерное распределение избыточной удельной проводимости.

СПИСОК ЛИТЕРАТУРЫ

[1] Ахапкин Г. И., Козарь А. В. и др. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1974, 15, № 2, с. 227. [2] Козарь А. В., Пирогов Ю. А. Деп. ЦНИИ «Электроника», № 6213//79. [3] Бреховских Л. М. Волны в слоистых средах. М.: Изд-во АН СССР, 1957. [4] Козарь А. В., Пирогов Ю. А. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1972, 13, № 5, с. 573. [5] Роуз А. Основы теории фотопроводимости. М.: Мир, 1966.

Поступила в редакцию 16.03.81

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23. № 5

УДК 621.378.325

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СУПЕРЛЮМИНЕСЦЕНЦИИ Для улучшения характеристик уки

Л. С. Корниенко, Н. В. Кравцов, Ю. П. Яценко (НИИЯФ)

Генерация ультракоротких импульсов (УКИ) при больших коэффициентах усиления активной среды в твердотельных лазерах приводит к ряду важных особенностей, таких как большая выходная мощность, высокие контраст и воспроизводимость, малое количество импульсов в цуге [1, 2]. Кроме того, как следует из работы [2], характеристики УКИ не ухудшаются в более широком интервале превышений накачек над порогом, чем при малых коэффициентах усиления, при которых, как правило, именно критичность к точности поддержания необходимого уровня накачки ограничивает получение стабильных УКИ с высоким контрастом и воспроизводимостью.

Все перечисленные особенности связаны в основном с возможностью применения в этом случае очень плотных фильтров (~1%), что приводит к более сильной дискриминации флуктуационных выбросов и высвечиванию большей запасенной энергии.

Необходимо отметить, что возникающая при больших коэффициентах усиления интенсивная суперлюминесценция также может существенно повлиять на характер генерации. С точки зрения получения предельной выходной мощности УКИ ее влияние отрицательно, поскольку она ограничивает коэффициент усиления [3, 4]. Тем не менее, как будет показано ниже, суперлюминесценция может играть и положительную роль, снижая требования к точности поддержания оптимального уровня накачки, необходимого для получения стабильных УКИ с высоким контрастом.

Рассмотрим ее влияние на примере твердотельного лазера с просветляющимся фильтром, работающего в режиме перекрытия стадий насыщения активной среды и нелинейного поглотителя. Для этого отметим вначале основные результаты, полученные ранее [5—7] для такого режима работы лазера в отсутствие суперлюминесценции.

В работе [7] было показано, что при перекрытии стадий насыщения активной среды и нелинейного поглотителя существует область параметров лазера, наиболее оптимальная для формирования УКИ с высоким значением контраста. В этой области дискриминация флуктуационных выбросов в шумовой картине на периоде резонатора становится настолько сильной, что полное просветление фильтра возможно только для одного максимального выброса. Особый интерес представляет ширина этой области δ_{α} по наиболее легко варьируемому параметру $\Delta \alpha_L$, характеризующему максимальное при данной накачке превышение усиления α_L над пороговым значением $\alpha_p (\Delta \alpha_L = \alpha_L - \alpha_p)$.

Связь δ_{α} с другими параметрами лазера определяется следующим соотношением [7]:

$$\delta_{\alpha} = \widehat{\nabla} \widetilde{\alpha}_{L} - \widehat{\Delta} \widetilde{\alpha}_{L} = \widehat{\Delta} \widetilde{\alpha}_{L} (K_{1} - 1), \qquad (1)$$

где

$$\widetilde{\Delta \alpha}_L = \frac{a_p \sigma_a T}{2\sigma_F T_{1F} \varkappa_0 R_1}$$
 — значение $\Delta \alpha_L$,

соответствующее порогу гигантского импульса; $\Delta \alpha_L$ — значение $\Delta \alpha_L$, соответствующее границе оптимальной области полного просветления фильтра только одним флуктуационным выбросом, σ_a , σ_F — сечения поглощения активной среды и фильтра; T_{1F} — время релаксации фильтра; T — период резонатора; $\alpha_P = \varkappa_0 + \gamma$ (\varkappa_0 — начальное поглощение в фильтре, γ — линейные потери в резонаторе); $R_1 = I_1/I_0$ — отношение интенсивности максимального выброса I_1 к средней фоновой интенсивности I_0 в начальной флуктуационной картине на периоде резонатора; $K_1 = I_1/I_2$ — отношение интенсивностей двух максимальных выбросов в начальной шумовой картине (исходный контраст); параметры R_1 и K_1 характеризуют начальную шумовую структуру на периоде резонатора и носят статистический характер.

В случае отсутствия суперлюминесценции $\Delta \alpha_L$ зависит от накачки *Р* следующим образом:

$$\Delta \alpha_L = \sqrt{2\alpha_p \frac{T\eta}{T_{1a}} \ln \frac{\bar{T}_L}{\bar{T}_0}} , \qquad (2)$$

где T_{1a} — время релаксации верхнего уровня; $\eta = P/P_0 - 1$, P_0 — накачка, соответствующая порогу пичка свободной генерации; \bar{I}_L — средняя интенсивность на периоде резонатора в конце линейного этапа.

Используя эту зависимость, для ширины оптимальной области по накачке можно получить выражение

$$\delta_{\rho} = \frac{\eta_1}{\eta_1 + 1} \left(K_1^2 - 1 \right). \tag{3}$$

Здесь $\delta_p = P_2/P_1 - 1$, P_1 — пороговая накачка появления гигантского импульса (2-й порог), P_2 — накачка, соответствующая границе оптимальной области полного просветления фильтра только одним флуктуационным выбросом; $\eta_1 = P_1/P_0 - 1$. При использовании зависимости (2) выражение для η_1 имеет вид

$$\eta_{1} = \frac{\alpha_{p} T T_{1a}}{8 \ln \frac{\overline{I_{L}}}{\overline{I_{0}}}} \left(\frac{\sigma_{a}}{\sigma_{F} T_{1F} \varkappa_{0} R_{1}} \right)^{2}.$$
(4)

Величина б_р характеризует точность поддержания накачки, необходимую для генерации УКИ в области максимального контраста. Вследствие сильного влияния начальной флуктуационной структуры на периоде

38

резонатора на ширину оптимальной области, определяемую величиной δ_p , требуемая точность поддержания накачки при обычно используемых параметрах лазера весьма высока.

Как следует из соотношения (3), в достаточно широком диапазоне параметров ($0 < \eta \leq 1$) эта точность уменьшается (δ_p растет) с увеличением порога гигантского импульса, определяемого величиной η_1 . В свою очередь, рост η_1 , как нетрудно заметить из (4), можно обеспечить путем увеличения таких параметров, как $S = \sigma_a/\sigma_F$ или *T*. Очевидно, что при неизменных параметрах лазера необходимую точность поддержания накачки можно уменьшить, если ослабить каким-либо образом зависимость $\Delta \alpha_L$ от *P*. В частности, для этой цели может быть использована суперлюминесценция.

При исследовании ее влияния воспользуемся, как и в работах [8, 9], упрощенной моделью, в которой будем рассматривать уже установившиеся потоки суперлюминесценции, причем вклад их в коэффициент усиления будем усреднять по длине кристалла. При этом накачку и потери в резонаторе (в частности, начальное поглощение в фильтре) будем считать достаточно высокими, чтобы насыщение усиления суперлюминесценцией происходило до того момента, когда существенный вклад в снятие инверсии будет давать излучение, распространяющееся по резонатору. В этом случае максимальный коэффициент усиления α_L (усредненный по длине кристалла l) определяется только суперлюминесценцией и находится из условия стационарности

$$\alpha_L = \frac{P\sigma_a T_{1a}}{1 + \sigma_a T_{1a} \tilde{I}_s} , \qquad (5)$$

здесь

$$\bar{I}_s = \bar{I}_s^+ + \bar{I}_s^- = \frac{1}{l} \int_0^l (I_s^+ + \bar{I}_s) dz,$$

усредненная по длине кристалла l суммарная интенсивность потоков суперлюминесценции I_s^+ , I_s^- , распространяющихся в противоположных направлениях, $\alpha_L = \sigma N l$ — усредненный по длине кристалла коэффициент усиления за проход, N — инверсная населенность рабочих уровней.

Для распространяющихся в противоположных направлениях потоков излучения I_s^+ , I_s^- в стационарном случае можно написать следующее уравнение [6, 7]:

$$\pm \frac{\partial I_s^{\pm}}{\partial z} = \frac{\mathbf{a}_L}{l} \left(I_s^{\pm} + \beta \right), \tag{6}$$

где $\beta = \Omega/4\pi\sigma_a T_{1a}$ — интенсивность спонтанных шумовых источников, Ω — телесный угол распространения суперлюминесценции (в простейшем случае $\Omega = s/l^2$, где s — сечение активного элемента).

Решение уравнения (6) имеет вид

$$I_{s}^{+} = \beta \left(e^{\frac{\alpha_{L}}{l}z} - 1 \right), \quad I_{s}^{-} = \beta \left(e^{\frac{\alpha_{L}}{l}(l-z)} - 1 \right).$$
(7)

Подстановка (7) в (5) дает следующее выражение для зависимости a_L от P:

$$2\beta \left(e^{\alpha_L} - 1\right) + \alpha_L \left(\frac{1}{\sigma_a T_{1a}} - 2\beta\right) = Pl.$$
(8)

39

Переходя к величинам $\Delta a_L = a_L - a_p$ и $\eta = P/P_0 - 1$, где a_p и P_0 — введенные выше пороговые значения усиления и накачки соответственно, для излучения, распространяющегося по резонатору, получим

$$\eta = \frac{\Omega e^{\alpha_p} (e^{\Delta \alpha_L} - 1) + \Delta \alpha_L (2\pi - \Omega)}{\Omega (e^{\alpha_p} - 1) + \alpha_p (2\pi - \Omega)}.$$
(9)

На рис. 1 показана зависимость Δa_L от η при $a_\rho = 5$ и $\Omega = 10^{-3}$, что примерно соответствует начальному поглощению в фильтре $\kappa_0 \leq 0,01$ и параметрам кристалла $l \approx 10$ см; $d \approx 0,5$ см.

Как видно из графика, с увеличением η рост Δα_L существенно замедляется. Для оптимальной области максимального контраста вместо (3) получим следующее выражение:

Так же, как и в выражении (3), величины $\Delta \alpha_L$ и η_i характеризуют соответственно максимальное превышение усиления и накачку на пороге гигантского импульса, однако теперь они связаны межыу собой соотношением (8), а не (2), как это было в случае отсутствия суперлюминесценции. На рис. 2 кривая 1 показывает рассчитанную по формуле (10) зависимость ширины оптимальной области δ_p от пороговой накачки пл. Здесь же (кривая 2) изображена аналогичная завысимость при отсутствии суперлюминесценции, рассчитанная по формуле (3). Сравнение этих кривых показывает, что при $\Delta \alpha_L \ll 1$ и соответственно малых η_i , когда существует достаточно сильная зависимость Δa_L от η, область максимального контраста δ_p при наличии суперлюминесценции того же порядка, что и без нее (M(K₁) ≈ K₁). Однако при больших η в области. где $\Delta \alpha_L > 1$, ослабление зависимости $\Delta \alpha_L$ от η , связанное с наличием в (9) экспоненциального члена (е^{са}), приводит к резкому расширению оптимальной области максимального контраста при использовании суперлюминесценции по сравнению со случаем генерации УКИ при ее отсутствии.

Таким образом, проведенный анализ показывает, что при формировании УКИ в режиме сильного перекрытия стадий насыщения активной среды и нелинейного фильтра наличие в активном элементе суперлюминесценции позволяет существенно ослабить зависимость $\Delta \alpha_L$ от Pи может способствовать расширению области накачек лазера, в которой происходит генерация УКИ с максимальным контрастом.

СПИСОК ЛИТЕРАТУРЫ

[1] Киркин А. И., Леонтович А. М., Можаровский А. М. Квант. электроника, 1978, № 5, с. 2640. [2] Варнавский О. П., Лариков А. В., Леонтович А. М. Квант. электроника, 1979, № 11, с. 2452. [3] Марин В. И., Никитин В. И. и др. Квант. электроника, 1975, № 5, с. 1340. [4] Киркин А. Н., Леонтович А. М., Можаровский А. М. Письма в ЖТФ, 1979, 5, с. 740. [5] Захаров С. Д., Крюков Н. Г. и др. Квант. электроника, 1973, № 5, с. 52. [6] Милинкевич А. В., Савва В. А., Самсон А. М. Журн. прикл. спектроскопии, 1976, 25, № 4, с. 618. [7] Корниенко Л. С., Кравцов Н. В. и др. Письма в ЖТФ, 1980, 6, с. 161. [8] Самсон А. М. Журн. прикл. спектроскопии, 1963, 2, № 3, с. 232. [9] Alien L., Peters G. I. J. Phys., 1971, A4, р. 564.

Поступила в редакцию 18.03.81

БЕСТН. МОСК. УН-ТА. СЕР: 3. ФИЗИКА. АСТРОНОМИЯ, 1982, Т. 23, № 5

УДК 535.36

О КОРРЕЛЯЦИИ ИНТЕНСИВНОСТЕЙ ПРИ РЭЛЕЕВСКОМ РАССЕЯНИИ СВЕТА

Н. И. Лебедев

(кафедра квантовой радиофизики)

Изучению статистики рэлеевского рассеяния посвящено значительное число работ (обзоры [1, 2]). В данной работе рассматривается корреляция полей, рассеянных в различных направлениях, при освещении образца двухлучевой накачкой ($k_1 \neq k_2$).

В работе [3] описан эффект корреляции стоксовой (s) и антистоксовой (a) компонент неупругого (в частности, комбинационного) рассеяния света. Неожиданная на первый взгляд корреляция разночастотных компонент поля наглядно объясняется с помощью модуляционной модели комбинационного рассеяния или с помощью квантовой картины распада двух фотонов накачки в s- и a-фотоны: $\omega_1+\omega_2\rightarrow\omega_3+\omega_a$ при условии сохранения импульса $\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_s+\mathbf{k}_a$. Количественно эффект описывается с помощью квантового аппарата матриц рассеяния.

В [3, 4] указано на то, что аналогичный эффект должен иметь место и при квазиупругом рассеянии двухлучевой накачки. При этом, поскольку рэлеевское рассеяние может быть достаточно сильным, его легче будет наблюдать экспериментально, чем *s*—*a*-корреляцию при комбинационном рассеянии. Такой эффект описывается в настоящей работе с помощью простой классической теории рассеяния. Показано, что корреляция полей, рассеянных в различных направлениях, действительно будет иметь место, причем при двух различных условиях синхронизма.

Пусть рассеивающая среда описывается флуктуирующей диэлектрической проницаемостью $\varepsilon = \langle \varepsilon \rangle + \Delta \varepsilon$, $\langle \Delta \varepsilon \rangle = 0$. Тогда качественно эффект можно объяснить следующим образом. При облучении среды плоской волной k₁ в рассеянное поле направления k даст вклад только та пространственная гармоника $\Delta \varepsilon_q$ флуктуаций, волновой вектор которой удовлетворяет условию Брэгга: $\mathbf{q} = \mathbf{k} - \mathbf{k}_1$. Гармоники $\Delta \varepsilon_{q_1}$ и $\Delta \varepsilon^q$ статистически независимы, если только $\mathbf{q}_1 \neq \mathbf{q}_2$ (в силу действительности $\Delta \varepsilon(\mathbf{r}) \quad \Delta \varepsilon_q = \Delta \varepsilon^*_{-\mathbf{q}}$). Поэтому, когда на среду падают две плоские волны (k₁, k₂), поля, рассеянные в разных направлениях (k, k'), статистически связаны, только если они образованы одной и той же (с точностью до знака **q**) гармоникой флуктуаций. Перебор возможных вариантов таких совпадений приводит к двум следующим условиям синхронизма:

$$k_1 + k_2 = k + k_1;$$
 (1)

$$k_1 - k_2 = \pm (k - k').$$
 (2)

Два знака в (2) соответствуют просто замене направлений наблюдения к и k'.