УДК 621.315.592

ЭЛЕКТРОННЫЕ МЕТАСТАБИЛЬНЫЕ СОСТОЯНИЯ В ЛЕГИРОВАННЫХ. СПЛАВАХ Рb_{1-х}Sn_xTe

Б. А. Акимов, Н. Б. Брандт, Л. И. Рябова

(кафедра физики низких температур)

Характерные свойства сплавов $Pb_{1-x}Sn_xTe$ с примесью ~0,5 ат. % In связаны с эффектом стабилизации (пиннинга) положения уровня Ферми глубоким квазилокальным (локальным) уровнем ε_t (см. [1] и цитированную там литературу). Так как с увеличением x уровень ε_t практически линейно по x движется из зоны проводимости через энергетическую щель ε_g в глубь валентной зоны, в непрерывном ряду твердых растворов $Pb_{1-x}Sn_xTe$ при T=4, 2K может быть реализовано как металлическое состояние с n- ($x \leq 0,22$) или p- ($x \geq 0,28$) типом проводимости.

Рис. 1. Диаграммы, иллюстрирующие цикл получения неравновесного металлического состояния в сплавах Pb_{i-x}Sn_xTe(In)

так и диэлектрическое состояние с крайне низкой концентрацией свободных носителей заряда ($n, p < 10^{10}$ см⁻³).

Настоящая работа в основном посвящена исследованию обнаруженных ранее [2, 3] явлений долговременных релаксационных процессов (ДРП) в сплавах Pb_{1-x}Sn_xTe(In) при выведении системы из равновесия с помощью различных физических воздействий.

1. Квантующее магнитное поле. Рассмотрим металлическое состояние сплавов $Pb_{1-x}Sn_xTe(In)$ с относительно низкой концентрацией носителей заряда (n, $p \sim 10^{16}$ см⁻³) и экспериментально достижимым полем ультраквантового предела $H_{ykn} \sim 10$ —30 кЭ. Равновесное состояние для сплавов *n*-типа в отсутствие внешних воздействий приведено на рис. 1, a; показаны зона проводимости и квазилокальный уровень ε_t . При введении поля $H > H_{ykn}$ (рис. 1, δ) под уровнем ε_t остается последняя подзона Ландау 0⁻, плотность состояний в которой растет пропорционально H при эффективном \tilde{g} -факторе, равном 2. При $\tilde{g} \neq 2$ на изменение плотности состояний влияет также смещение краев разрешенных зон [1]. Так как положение уровня Ферми стабилизировано уровнем ε_t , при введении поля $H > H_{ykn}$ происходит прямое перетекание электронов с уровня ε_t в зону проводимости. Процесс перетекания условно показан стрелками на рис. 1, δ . О большой длительности процессов перетекания полувения понтрости потенциалов при $H > H_{ykn}$ [2].

Обнаружено, что зависимости холловской разности потенциалов $U_{\mathbf{x}}(t)$ не описываются экспоненциальной функцией с одним характерным параметром т. Сразу же после введения сильного поля наблюдается быстрое, а затем медленное падение $U_x(t)$. Поэтому для качественного описания ДРП удобно использовать интегральный параметр au_1 — интервал времени, за который происходит изменение U_x от начального значения $U_x(0)$ до величины U'_x , определяемой соотношением $\ln[(U_x(0)-U_x^{\text{равн}})/U'_x-U_x^{\text{равн}}]=1$, где $U_x^{\text{равн}}$ — равновесное значение U_x . Для $\tilde{\tau_1}$ как функции x, P, T при H = 60 кЭ (P — внешнее давление) установлены следующие закономерности. При T=4,2K, P=1 бар для сплава с x~0,20 величина $\tilde{\tau}_1$ достигает нескольких десятков часов и уменьшается до ~ 0.5 ч с ростом x до $x \simeq 0.30$. Для всех сплавов состава $0.20 \leqslant x \leqslant 0.30$ увеличение давления до 15 кбар приводит к уменьшению $\tilde{\tau_1}$ при T=4.2К до $\tilde{\tau_1}\leqslant 1$ с. Уменьшение $\tilde{\tau_1}$ до $\tilde{\tau_1}\leqslant 1$ с при P=1 бар во всех сплавах происходит также с повышением температуры Т до некоторого характерного значения T_H~16-20 К. При увеличении давления T_H уменьшается и достигает ~4,2К при P = 15 кбар. Таким образом, темп перетекания уровень-----зона можно усилить нагревом образца до ~25 К. Последующее охлаждение до 4,2 К «замораживает» состояние с увеличенной концентрацией носителей заряда (рис. 1, в). При выведении сильного поля происходит перетекание зона-уровень (обратное перетекание). Установлено, что квантующим магнитным полем в сплавах $Pb_{1-x}Sn_xTe(In)$ индуцируется сохраняющееся при H=0 неравновесное состояние с медленно уменьшающейся во времени концентрацией электронов или дырок (рис. 1, г).

Анализ экспериментальных данных показывает, что величина т1 при прочих равных условиях превышает аналогичное время т2, характеризующее обратное перетекание. Неравенство $\tau_1 > \tau_2$ обусловливают, по-видимому, следующие причины. В квантующем магнитном поле происходит одномеризация и полная спиновая поляризация газа носителей заряда. Так как на примесном центре могут находиться два электрона с противоположно направленными спинами [4], прямые переходы происходят частично с переворотом спина, тогда как для обратных переходов, очевидно, переориентации спинов не требуется (см. рис. 1). Кроме того, при Н>Нуки происходит уменьшение плотности состояний вблизи уровня Ферми, что замедляет темп переходов. И наконец, ситуации, представленные на рис. 1, б и 1, г, отличаются тем, что в первом случае, по-видимому, происходит увеличение эффективного барьера W между примесными и зонными состояниями электрона, а во втором случае — его уменьшение.

Численные оценки величины W приводят к значению $W \sim 20$ — 40 мэВ. Расчеты величин $\varepsilon_F^{(0)}$ и $\widetilde{\varepsilon}_F^{(1)}$, $\varepsilon_F^{(2)}$ (см. рис. 1) по формулам, приведенным в работе [1], показывают, что энергии возмущения уровня Ферми сравнимы с W. Этим, скорее всего, и обусловлен неэкспоненциальный характер релаксаций.

Заметим, что магнитное поле как параметр, выводящий систему из состояния равновесия, обладает тем преимуществом, что возникающее возбуждение является однородным по всему объему массивного образца; при этом практически полностью исключается влияние контактных явлений и поверхностных эффектов на характер физических процессов в кристалле. Совокупность экспериментальных данных также однозначно указывает на то, что описываемые свойства сплавов Pb_{1-x}Sn_xTe(In) не могут быть обусловлены наличием крупномасштаб-

13

ных флуктуаций потенциального рельефа и связанных с ними неоднородностей кристалла по объему. Основным аргументом в пользу этого утверждения является возможность наблюдения в сплавах квантовых осцилляций Шубникова — де Гааза в неравновесном металлическом состоянии, что иллюстрирует рис. 2, где представлены осцилляции производной $\partial \rho/\partial H$ для сплава с $x \simeq 0,20$ при T = 4,2 К. Кривые 2, 3 соответствуют «замороженному» неравновесному металлическому со-

Рис. 2. Вид записи осцилляций др/ /дН для сплава Рь0,80 Sn0.20 Te(In) в исходном (1) и неравновесных «замороженных» состояниях (2, 3)

стоянию с повышенной концентрацией электронов (см. рис. 1, г), полученному с помощью магнитного поля величины 20 и 40 кЭ соответственно.

2. ИК-подсветка. Фотоэлектрические явления в сплавах $Pb_{1-x}Sn_xTe(In)$ исследованы C использованием охлаждаемой гелием вакуумируемой металлической камеры, практически полностью экранирующей образцы OT фонового излучения. В качестве источника ИК-излучения применянагреваемое протекающим лось током угольное сопротивление, помещенное на расстоянии ~100 мм от образца. Так как в проведенэкспериментах было ных важно осуществить возможно более равномерное объему возбужде-IIO ние. были использованы тонкие образцы размерами $3 \times 0.1 \times$ $\times 0.2$ мм.

В настоящей работе установлены следующие закономерности:

1) Все образцы сплавов Pb_{1-x}Sn_xTe(In) со стабилизирован-

ным уровнем Ферми обладают повышенной фоточувствительностью как в диэлектрическом, так и в металлическом состоянии: сопротивление R образцов при T=4,2 К резко (до 8 порядков) падает при нагревании угольного сопротивления до температуры $T^* \simeq 15-20$ К. При $T^* < 200$ К температура образца T остается постоянной с точностью до 0,1 К. Темновые зависимости R(T) и такие же зависимости $R^*(T)$ в условиях ИК-подсветки существенно различаются между собой при $T < T_{\phi} \simeq 20$ К. Величина R имеет максимум при $T \simeq T_{\phi}$ и уменьшается с понижением температуры ниже T_{ϕ} .

2) В металлическом состоянии наблюдаются изменения осцилляций Шубникова — де Гааза, соответствующие растяжению поверхности. Ферми светом, в сплавах как с *n*-, так и с *p*-типом проводнмости. В сплавах с $x \simeq 0,22$ и 0,25 наблюдаются переходы диэлектрик — металл под действием ИК-облучения. Во всех сплавах состава $0,20 \le x \le 0,30$ проявляется положительный фоторезистивный эффект, отвечающий монополярному фотовозбуждению.

3) После выключения ИК-подсветки при $T < T_{\Phi}$ происходят ДРП восстановления темновой проводимости, а в металлическом состоянии

при T = 4,2 К процесс медленного сокращения во времени поверхности Ферми, аналогично процессам, рассмотренным в п. 1.

4) В диэлектрическом состоянии сплавов $Pb_{1-x}Sn_xTe(In)$ удалось установить аналитический вид зависимостей $(\sigma - \sigma_0)/\sigma_0$ (σ_0 — темновая проводимость) от времени при релаксации остаточной проводимости σ . Обнаружено, что для всех T^* (уровней возбуждения) во всех сплавах (кроме сплавов с $x \simeq 0.26$) при t > (10-100) с зависимости ($\sigma - \sigma_0/\sigma_0(t)$

с высокой точностью опи сываются степенной функ- $(\sigma - \sigma_0)/\sigma_0 =$ пией вида $=At^{-a}$ (рис. З, цифры у кривых обозначают T^* в K, момент t=0COOTветствует выключению тока через угольное сопротивление; к этому моменту световая проводимость достигала насы-Найдено, что щения). параметр α при фикси- T^* рованном является немонотонной функцией х максимум И имеет . y сплава с х≈0,26. В этом сплаве времена полной релаксации и изменения сопротивления при подминимальны. светке C увеличением Т* а уменьшается от ~ 2 до ~ 0.45 c $x \approx 0.25$; в сплаве до $\simeq 0.7$ в сплаве С $x \approx 0.27;$ \simeq 0,3 ЛО при $x \simeq 0.28$, что соответствует процессу замедления релаксации при увеличении степени возбуждения.

 5) Граничная длина волны λ_{гр} фотовозбуждения оценивалась по кинетике нарастания фотопроводимости (ФП) для образцов различной толщины при изменении

Рис. 3. Кинетика спада $\Phi\Pi$ в сплавах Pb_{1-x}Sn_xTe(In). Цифры у кривых — температура T* излучателя в K; x=0.25 (O); 0,27 (X) и 0,28 (\bigoplus)

 T^* . Установлено, что диапазон фоточувствительности сплавов $Pb_{1-x}Sn_xTe(In)$ простирается вплоть до $\lambda \sim 60$ мкм. Таким образом, $\Phi \Pi$ в этих соединениях является «примесной».

Интересным объектом исследования является предельное соединение ряда — PbTe(In), у которого уровень ε_t расположен при T=4,2 К на 70 мэВ выше дна зоны проводимости, а концентрация электронов составляет ~8·10⁴⁸см⁻³. Обнаружено, что даже у этого соединения удается увеличить концентрацию электронов на ~20% с помощью ИК-подсветки при $T^* \simeq 50$ К. Фоторезистивный эффект является положительным, хотя на образцах толщины ~1 мм наблюдается увеличение сопротивления на ~5% при ИК-облучении. В PbTe(In) была обнару-

15

жена несколько необычная кинетика нарастания и спада ФП. При включении ИК-подсветки при T=4,2 К концентрация электронов возрастает и достигает насыщения, уровень которого увеличивается с ростом T^* , однако при выключении света неравновесная величина n остается практически неизменной в течение $\sim 10^4$ с. Эти данные указывают на то, что с течением времени при постоянной подсветке замедляется темп генерации неравновесных электронов. Система возвращается в исходное (равновесное) состояние при кратковременном про-

Рис. 4. Кинетика нарастания и спада ФП в высокоомном сплаве PbTe(Ga)

греве образца до температуры $T_{\phi} \simeq 20$ К и последующем охлаждении до T = 4.2 К.

В настоящее время синтезированы сплавы PbTe с примесью Ga, обладающие высоким темновым сопротивлением $\rho \ge 10^6$ Ом см при T = 4.2 K высокой фоточувстви-И температурах $T \leq$ тельностью при 100 К. В этой системе наблюдаются эффекты. аналогичные «замороженной» ФП: ИК-подсветка может приводить к уменьшению о примерно в 10⁹ раз. Граничная длина волны ФП составляет 4 мкм. Исследования кинетики фотопроводимости в PbTe(Ga) проведены с помощью той же измерительной камеры, что и при изучении сплавов $Pb_{1-x}Sn_xTe(In)$. В качестве источника излучения был использован светодиод с длиной волны мкм. При *T*=4,2 К зависимости 1 σ(t) сплавов PbTe(Ga) обнаруживазадержку t_з нарастания о при ЮТ

включении источника освещения (t=0), последующий практически линейный рост сигнала и сложный характер спада ФП после выключения источника освещения (рис. 4). Первоначально спад проводимости описывается экспоненциальным участком с характерным временем релаксации $\tau_1 \simeq 1.4$ мс. Через несколько секунд быстрый участок спада сменяется крайне медленной релаксацией ($\tau_2 > 10^4$ с). Повторное включение подсветки (см. рис. 4) приводит к быстрому возрастанию с до значения, при котором рост ФП был прерван. Вопрос об интерпретации свойств высокоомных сплавов PbTe(Ga) пока остается открытым.

3. Электрическое поле. В металлическом состоянии сплавов $Pb_{i-x}Sn_xTe(In)$ с концентрацией электронов или дырок *n*, $p \sim 10^{45}$ — 1016 см-3 исследованы импульсные вольт-амперные характеристики И переходные релаксационные процессы после прохождения одиночных импульсов. Длительность измерительных импульсов составляла $\Delta t \sim 8$ мкс. Вольт-амперные характеристики снимались с токовых контактов образца в режиме заданного напряжения в координатах *I—U*, где I — амплитуда тока через образец, U — приложенное напряжение. Размеры образцов — $0,25 \times 0,3 \times 2,5$ мм.

Рассмотрим рис. 5, где представлены зависимости полного сопротивления образца R от времени t для сплава с $x \simeq 0,21$. Величина R при T = 4,2 К измерялась с помощью слабых измерительных токов $\sim 0,1$ мА. В моменты $t_{1,3,5}$... к образцу прикладывался импульс напряжения нарастающей амплитуды. В моменты $t_{2,4,6...}$ образец вместе с измерительной камерой нагревался до $T \sim 20$ К н затем охлаждался до T = 4,2 К. Установлено, что после прохождения импульса сопротивление R возрастает до значения $R^*(U)$ и медленно релаксирует к первоначальному значению $R = R_0$. Отношение R^*/R_0 резко возрастает при $U \simeq 1,5$ В $(E \sim (6-8) B/cm)$ и достигает ~ 100 при $U \simeq 2$ В. Таким образом, в системе происходит переключение из низкоомного состояния в высокоомное сильным электрическим полем.

При исследовании распределения потенциала по длине образца обнаружено, что высокоомная область локализуется у катода: в образце

образуется домен сильного поля. Оценки температуры горячих электронов показывают, что в поле $E \sim 8$ В/см они приобретают энергию, вполне достаточную для преодоления барьера W между примесными и локализованными состояниями. Разогревом носителей заряда и их захватом на квазилокальный уровень ε_1 и объясняется, по-видимому, обнаруженная неустойчивость (механизм концентрационной нелинейности). Критическое поле образования домена несколько «размазано», что связано, скорее всего, с некоторой неоднородностью нанесенных на образец контактов. Периодические колебания амплитуды импульсов тока при непрерывной их подаче с интервалом ~ 1 с наблюдались при $T \simeq 12$ К. Эти колебания могут соответствовать движению доменов.

Заметим, что при фотовозбуждении происходит вырождение неравновесных носителей заряда в *L*-зонах. Возникающая ситуация аналогична спектру сплавов в металлическом состоянии. Поэтому импульсным электрическим полем (при разогреве электронов или дырок) может осуществляться гашение остаточной проводимости. Как показывают эксперименты, при полевом гашении ФП также возникает неустойчивость типа ганновской.

исследования показывают, **HTO** сплавах Проведенные в Pb_{1-x}Sn_xTe(In) могут быть индуцированы долговременные пространственные неравновесные состояния. Это специфическое свойство сплавов Pb_{1-т}Sn₂Te в совокупности с другими свойствами (образование диэлектрического состояния, высокая фоточувствительность, возможность управления временами жизни неравновесных носителей заряда с помощью различных физических воздействий, отсутствие поверхностных шунтирующих слоев, повышенная однородность) дать может возможность для построения на основе сплавов Pb_{1-x}Sn_xTe непрерывных матриц, «запоминающих» оптические изображения.

В заключение авторы благодарят В. В. Соковишина, Д. Р. Хохлова и В. Н. Никифорова за помощь в проведении измерений и обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

[1] Акимов Б. А., Брандт Н. Б. и др. ФТТ, 24, 1982, с. 1026. [2] Акимов Б. А., Брандт Н. Б. и др. Письма в ЖЭТФ, 1979, 29, с. 11. [3] Вул Б. М., Воронова И. Д. и др. Письма в ЖЭТФ, 1979, 29, с. 21. [4] Волков Б. А., Панкратов О. А. ДАН СССР, 1980, 255, с. 93.

Поступила в редакцию 07.06.82

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1982, т. 23, № 6

УДК 530.12:531.51

К ВОПРОСУ ОБ ИЗМЕНЕНИИ е/m В ПЯТИМЕРНОЙ ТЕОРИИ ГРАВИТАЦИИ, ЭЛЕКТРОМАГНЕТИЗМА И СКАЛЯРНОГО ПОЛЯ

Ю. С. Владимиров, В. В. Кислов

(кафедра теоретической физики)

Попытки объединения гравитации и электромагнетизма в рамках единой теории стали предприниматься сразу же после создания общей теории относительности. В работе Калуцы [1] был предложен иятимерный вариант единой теории. Однако этот вариант и первые его модификации обладали рядом существенных недостатков, отмеченных в свое время Эйнштейном [2] и др. Главным из недостатков было отсутствие предсказаний новых эффектов.

В последнее время вновь оживился интерес к такого рода и более общим единым теориям, в частности, удалось устранить большинство недостатков первых вариантов пятимерных теорий [3, 4]. Одно из предсказаний пятимерной теории изложено в данной работе.

Рассмотрим пятимерное риманово пространство, в котором пятая координата ассоциируется с введением в теорию электрического заряда. 5-метрику запишем в виде

где $g_{\mu\nu}$ — метрика 4-мерного физического пространства-времени, A_{μ} — векторный потенциал электромагнитного поля, k — ньютоновская постоянная тяготения, c — скорость света, φ — некоторый возникающий в теории дополнительный фактор, описывающий скалярное поле.

Запишем уравнения Эйнштейна в 5-мерном пространстве-времени:

$${}^{\mathbf{5}}R_{AB} - \frac{1}{2} G_{AB} {}^{\mathbf{5}}R = \varkappa Q_{AB},$$

где A, B=0, 1, 2, 3, 5; тензор Риччи ${}^{5}R_{AB}$ и скалярная кривизна ${}^{5}R$ определяются стандартным образом на основе метрики G_{AB} , а Q_{AB} — пятимерный тензор внешней материи. Производя 1+4-расщепление 5-мерного пространства-времени [4], выделяя явно пятую координату (т. е. представляя $G_{AB} = \tilde{g}_{AB} - \lambda_{A}\lambda_{B}$, где $\lambda_{A} = G_{A5}$, $\tilde{g}_{\mu\nu} = \varphi^{2}g_{\mu\nu}$, $\tilde{g}_{\mu5} = 0$), и

18