$f_1$  лежит на ребре диаграммы. Аналогичным образом можно рассмотреть и другой вариант, когда  $f_1$  лежит внутри диаграммы. Подробности здесь не приводятся.

После построения первой ячейки строится с помощью правила интервалов ячейка с опорными линиями  $f_6$ ,  $f_3$ ,  $f_5$ , уже нанесенными на лиаграмму. Будем называть опорными тройки линий (с общей точкой), направленных вверх или вниз. В этом смысле' тройка  $f_7$ ,  $f_2$ ,  $f_4$ , входящая в другую соседнюю ячейку, не является опорной. Задание этой

тройки не определяет однозначно расположения частот ячейки при достройке с помощью правила интервалов (например,  $f_{13}$  и  $f_{14}$  можно поменять местами) и не определяет величины интервала. Поэтому для продолжения диаграммы вверх в *А*-направлении надо определить опорную тройку с помощью последующего эксперимента с двойным резонансом (например, облучить частоту  $f_{15}$ ). Здесь тоже можно сформулировать однозначный способ выделения частоты  $f_{16}$ , входящей в опорную тройку  $f_{16}$ ,  $f_{12}$ ,  $f_{11}$  соседней ячейки. С помощью изложенной методики последовательно заполняется вся диаграмма.



Рис. 4. Комбинированная методика отнесения

Методика непосредственно обобщается и на диаграммы произвольной размерности. В случае необходимости можно прибегнуть и к дополнительным экспериментам с двойным резонансом, например когда на каком-либо этапе возникают затруднения с отысканием в спектре повторяющихся интервалов. Можно также использовать в данном построении и дополнительную информацию, полученную, например, в результате точного расчета или расчета с применением теории возмущений.

## СПИСОК ЛИТЕРАТУРЫ

[1], Туманов В. С. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1972, 13, № 3, с. 271. [2] Соколов М. Ф., Туманов В. С. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1974, 15, № 1, с. 44. [3] Туманов В. С. Журн. структ. химии, 1974, 15, № 3, с. 561. [4] Туманов В. С. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1978, 19, № 3, с. 63.

Поступила в редакцию 17.05.82

#### ВЕСТН. МОСК. УН-ТА. СЕР. З. ФИЗИКА. АСТРОНОМИЯ, 1989, Т. 24, № 3

#### УДК 548:537.611.46

ВЛИЯНИЕ КИСЛОРОДНОГО ПАРАМЕТРА НА ТОЧКУ КЮРИ ФЕРРИТОВ-ШПИНЕЛЕЙ

# В. И. Николаев, В. С. Русаков, Н. И. Чистякова

(кафедра общей физики для физического факультета)

Температура магнитного превращения ферритов со шпинельной структурой, как известно, определяется прежде всего обменным взаимодействием между катионами, занимающими тетраэдрические и октаэдрические позиции (*AB*-взаимодействие) [1]. Обменная энергия  $W_{\text{обм}}$ , обусловленная этим взаимодействием, зависит не только от электронной конфигурации катионов в *A*—*B*-подрешетках, но также и от угла косвенных обменных связей  $\vartheta$  катион—анион—катион  $(A - O^2 - B)$ . Обычно зависимостью  $W_{oбм}$  от угла  $\vartheta$  пренебрегают, считая, что угол  $\vartheta$ не зависит от внешних параметров, определяющих состояние спиновой системы (таких, как температура *T*, давление *p*, напряженность магнитного поля *H*). Тем не менее вопрос о влиянии зависимости  $W_{oбм}(\vartheta)$ на точку Кюри феррита  $T_c$  заслуживает внимания, поскольку угол  $\vartheta$ может быть изменен путем замещения одних катионов другими или в результате изменения распределения катионов по подрешеткам. В такой постановке задача имеет также большое практическое значение.

Особенностью шпинельной структуры является то, что угол косвенных обменных связей • зависит только от свободного параметра структуры *и* (так называемый кислородный параметр) и не зависит от параметра решетки *a* [2]:

$$\cos \vartheta = \frac{1}{\sqrt{3}} \frac{(3(u-1/4)^2 + (u-5/8)^2 + 2(u-3/8)^2 - 11/64)}{2(u-1/4)[2(u-3/8)^2 + (u-5/8)^2]^{1/2}}.$$
 (1)

В соответствии с (1)  $\vartheta = \arccos(-1/\sqrt{3}) \approx 126^{\circ}$  при u = 3/8 («идеальный» случай), с ростом параметра u угол  $\vartheta$  уменьшается. Для большинства ферритов-шпинелей 0,375  $\leqslant u \leqslant$  0,390.

Для количественных оценок влияния изменения  $\Delta u$  кислородного параметра на  $T_c$  мы воспользовались формализмом метода молекулярных орбиталей в применении к обменным связям  $Fe^{3+}-O^{2-}-Fe^{3+}$ . Согласно [3], в случае ферритов-шпинелей обменная энергия практически полностью определяется о-связями, тогда как вклад от  $\pi$ -связей оказывается пренебрежимо малым. С учетом этого обстоятельства формула для  $T_c$  может быть представлена в виде

$$T_{c} = \operatorname{const} \left[ B_{\sigma}(a, u) + S_{\sigma}(a, u) \right]^{4} \cdot \cos^{2} \theta(u), \qquad (2)$$

где  $B_{\sigma}$  и  $S_{\sigma}$  — интегралы переноса и перекрытия для *d*-оболочек ионов  $Fe^{3+}$  (соответствующие переносу 2*p*-электронов ионов кислорода на

 $T_{c}, ycA.ed.$  140 120 100 a = 8, 2A B, 3 B, 4 B, 5 B, 4 B, 5 B, 5 B, 4 B, 5 B, 4 B, 5 B, 4 B, 5 B, 4 B, 5 B, 5 B, 4 B, 5 B, 5 B, 4 B, 5 B,



незанятые 3*d*-орбитали ионов железа и перекрытию заполненных 3*d*-орбиталей с орбиталями ионов  $O^{2-}$ ). Результаты вычислений групповых интегралов  $B_{\sigma}$  и  $S_{\sigma}$  [3] при различных значениях параметров *a* и *u* в пределах, характерных для ферритовшпинелей, позволили установить, что точка Кюри феррита зависит от *u* гораздо сильнее, чем от *a*. Как видно из рис. 1,  $T_c$  практически линейно зависит от параметра *u*, причем температура Кюри тем больше, чем меньше кислородный параметр.

С целью сопоставления расчетных данных с экспериментальными нами были проведены температурные исследования мёссбауэровских спектров ядер <sup>57</sup>Fe в медном феррите, у которого обе катионные подрешетки содержат ионы железа:

 $Cu_{\alpha}^{2+} Fe_{1-\alpha}^{3+} [Cu_{1-\alpha}^{2+} Fe_{1+\alpha}^{3+}] O_4^{2-}.$ 

Медный феррит представляет собой удобный модельный объект исследования зависимости  $T_c$  от u, поскольку для него параметр обращенности зависит от температуры и меняется в пределах от 0 до 1/3 [4]; кроме того, эффективные радиусы ионов Cu<sup>2+</sup> и Fe<sup>3+</sup> существенно различаются (соответственно 0,70 и 0,67 Å). В случае медленно охлаж-



Рис. 2. Температурная зависимость разности сдвигов  $\Delta \delta^{BA} = \delta^{B'} - \delta^{A}$ мёссбауэровской линии ядер <sup>57</sup>Fe в A- и B-позициях медного феррита

денного феррита CuFe<sub>2</sub>O<sub>4</sub>- по мере увеличения  $\alpha$  (с ростом *T*) происходит изменение средних эффективных радиусов катионов *r*, занимающих *A*- и *B*-места: увеличение  $r^A$  и уменьшение  $r^B$ , что приводит к увеличению расстояний  $A-O^{2-}$  и уменьшению  $B-O^{2-}$ . Эти изменения межатомных расстояний сответствуют увеличению кислородного параметра *u* с ростом температуры. Экспериментальным подтверждением изменения параметра *u* с ростом *T* являются данные о температурной зависимости разности сдвигов  $\Delta \delta^{BA} = \delta^B - \delta^A$  мёссбауэровской линии ядер <sup>57</sup>Fe в *A*- и *B*-позициях (рис. 2). Как было показано нами в [5] (см. также [6, 7]), по этим данным можно рассчитать значения параметра *u* при различных температурах. Поскольку в медном феррите при  $T < T_{B-T} \approx 630$  К появляются ян-теллеровские искажения, такие расчеты имеют смысл лишь при  $T > T_{B-T}$  (см. рис. 2). Заметим, что в этих расчетах поправка на тепловое расширение оказывается пренебрежимо малой. В области высоких температур, где возможно срав-

нение с известными результатами рентгенографических исследований, знаябо чение параметра u, рассчитанное по разности  $\Delta \delta^{BA}$ , согласуется с ними  $(u=0,380\pm0,005$  [9]).

На рис. З показана расчетная зависимость  $T_{C}(T)$  для медного феррита, полученная с помощью формулы (2) с использованием экспериментальных значений  $\Delta\delta^{BA}$ . Значение константы в (2) было определено на основании данных о температурной зависимости эффективных магнитных полей  $H_n^A$  и  $H_n^B$  в области расположения ядер <sup>57</sup>Fe в подрешетках феррита. По



Рис. 3. Сравнение расчетной зависимости  $T_c(T)$  (кривая) для медного феррита с экспериментальными данными: 1 — наши данные, 2 — данные работы [11] (значения  $T_c$  соответствуют температурам  $T=T_{3ak}$ )

31

нашим данным для медленно охлаждаемого феррита магнитное упорядочение появляется при  $T \approx 770$  К (в согласии с [10]). На том же рисунке показаны экспериментальные значения  $T_c$ , полученные Мексменом [11] при исследовании магнитных свойств образцов медного феррита, закаленных от различных температур  $T_{3ax}$ . Как видно из рис. 3, расчетные значения  $T_c$  хорошо согласуются с результатами непосредственных магнитных измерений. Такое согласие тем более заслуживает внимания, что при измененин а меняется не только u, но и относительное число обменных связей  $Fe^{3+}-O^{2-}-Fe^{3+}$ ,  $Fe^{3+}-O^{2-}-Cu^{2+}$ ,  $Cu^{2+} -O^{2-}--Cu^{2+}$ .

Проведенные нами исследования подтверждают, таким образом, существенное влияние изменения кислородного параметра на точку Кюри феррита (*T<sub>c</sub>* тем выше, чем меньше *u*). Это обстоятельство может оказаться важным при изыскании. путей улучшения магнитных свойств ферритов, кристаллизующихся в структуру шпинели.

## СПИСОК ЛИТЕРАТУРЫ

[1] Смнат Я., Вейн Х. Ферриты. М.: ИЛ, 1962. [2] Бляссе Ж. Кристаллохимия феррошлинелей. М., 1968. [3] Van der Woude F., Sawatzky G. A. Proc. of Mössbauer spectrometry conference. Dresden, 1971, 1, р. 335. [4] Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мар, 1976, т. 1. [5] Николаев В. И., Русаков В. С., Чистякова Н. И. Вестн. Моск. унта. Сер. Физ. Астрон., 1983, 24, № 1, с. 74. [6] Николаев В. И. и др. В кн.: Тез. докл. V Всесоюз. конф. «Термодинамика и технология ферритов». Ивано-Франковск, 1981, с. 133. [7] Николаев В. И., Русаков В. С., Чистякова Н. И. Там же, с. 133. [8] Оhnishi H., Тегаnishi Т. J. Phys. Soc. Japan, 1961, 16, N 1, р. 35. [9] Verwey E. J. W., Нааутап Р. W. Physica, 1941, 8, N 9, р. 979. [10] Evans B. J., Hafner S. S. J. Phys. Chem. Solids, 1968, 29, р. 1573. [11] Mexmain J. Ann. Chim., 1969, 4, р. 429.

Поступила в редакцию 10.06.82

#### ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 3

УДК 531.18

### ковариантная механика и формы релятивистской динамики

### Н. Л. Клепиков, А. Н. Шатний

(кафедра теоретической физики)

1. Введение. В последнее время интенсивно развивается релятивистская ковариантная классическая механика (РКМ) систем прямо взаимодействующих частиц с целью прояснения пространственной интерпретации прямого взаимодействия и применения этой теории к решению конкретных задач. Явная ковариантность в РКМ [1—3] достигается ценой введения дополнительного числа степеней свободы: на одну частицу системы N частиц приходится 4 степени свободы. Динамика системы задается N пуанкаре-инвариантными связями  $f_a=0$ , где функции  $f_a$  зависят от инвариантных комбинаций внутренних коллективных переменных [3]. Эти функции генерируют канонические преобразования движения в 8N-мерном фазовом пространстве Ф. Генераторы группы Пуанкаре действуют в пространстве Ф и не зависят от наличия взаимодействия в системе.

Другой подход к описанию релятивистской системы частиц [4, 5] не является явно ковариантным и формулируется в терминах дираковских форм релятивистской динамики (ФД) [6], в которых наличие взаимодействия в системе описывается включением членов взаи-