следует, что, несмотря на упрощающие предположения, выражение (2) достаточно хорошо согласуется с экспериментом.

Таким образом, модель роста зародышей обратной намагниченности находится в хорошем соответствии с поведением ВДП при перемагничивании поликристаллических ферритов в слабых полях. Отметим также, что сильное изменение ВДП в процессе перемагничивания необходимо учитывать при точном расчете практических устройств на ферритовых сердечниках.

СПИСОК ЛИТЕРАТУРЫ

[1] Коłotov O. S., Родогнеv V. А., Теlesnin R. V. Czechosi. J. Phys., 1971, B21, N 4-5, p. 454. [2] Колотов O. С., Погожев В. А., Телеснин Р. В. УФН, 1974, 113, N 4, c. 579. [3] Коłotov O. S., Родогнеv V. А., Теlesnin R. V. IEEE Trans. Magnet., 1974, Mag-10, N 4, p. 1023. [4] Колотов О. С. и др. ФММ, 1978, 46, № 6, c. 1182. [5] Пирогов А. И., Шамаев Ю. М. Магнитные сердечники в автоматике и вычислительной технике. М.: Энергия, 1973, с. 264. [6] Балашов Е. П. и др. Идентификация магнитных элементов автоматики и вычислительной техники. Л.: Энергия, 1980, с. 123. [7] Коłotov O. S., Родог hev V. А., Telesnin R. V. Phys. stat. sol., 1969, 36, p. 459. [8] Мепуик N., Goodenoug b J. J. Appl. Phys., 1955, 26, N 1, p. 8. [9] Stegmeier H. Z. angew. Phys., 1962, 14, N 3, p. 157.

Поступила в редакцию 29.07.82

ВЕСТН. МОСК. УН-ТА. СЕР. Э. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 3

УДК 551.466.4

О НАБЛЮДЕНИИ ЭФФЕКТА БЛОКИРОВКИ ПОВЕРХНОСТНЫХ Гравитационно-капиллярных волн неоднородным течением

К. В. Показеев, А. Д. Розенберг

(кафедра физики моря и вод суши)

При распространении волн на поверхности потока, неоднородного вдоль направления его скорости, в случае, когда локальная групповая скорость волн равна и противоположна скорости потока, имеет место эффект блокировки, заключающийся в остановке и отражении волн. Впервые феномен остановки волн был рассмотрен теоретически для гравитационных волн в [1]. В [2] и независимо в [3] также для гравитационных волн было показано, что при блокировке волны не только останавливаются, но и отражаются; в [4] была подробно рассмотрена трансформация гравитационно-капиллярных волн в области блокировки. Экспериментально эффект блокировки никем не исследовался.

Учитывая важность указанного эффекта для ряда задач, связанных с дистанционными методами определения параметров взволнованной морской поверхности, была проведена экспериментальная проверка эффекта блокировки в лабораторных условиях. Опыты выполнены в стеклянном лотке с размерами $670 \times 40 \times 20$ см с проточной водой; неоднородность скорости потока V(x) вдоль направления распространения волн x (dV/dx=0,1 с⁻¹) обеспечивалась изменением площади поперечного сечения (глубины) лотка. Волнопродуктор поверхностных волн, размещенный в начале лотка, генерировал пакеты или непрерывные цуги синусоидальных волн заданной частоты; трансформация волн на различных удалениях от волнопродуктора наблюдалась на снимках волновой картины при фотографировании сбоку или сверху через стеклянную стенку; в ряде случаев производилась запись волнограмм системой размещенных вдоль лотка электродных волнографов.

При распространении волн из области неподвижной жидкости в область медленно меняющегося (адиабатическое приближение) потока частота волн сохраняется, а волновое число изменяется в соответствии с законом дисперсии [5]:

$\omega = (gk + k^3 \alpha / \rho)^{1/2} \pm k V(x),$

где $\omega = 2\pi F$ и $k = 2\pi/\lambda$ — временная и пространственная частоты повехрностных волн, g — ускорение силы тяжести, a и ρ — коэффициент поверхностного натяжения и плотность воды. На рис. 1, a изображено семейство кривых, рассчитанных по приведенной формуле для несколь-

ких значений V = const; положительным F отвечает распространение волн против течения, отрицательным — вдоль него. Для каждой из приведенных кривых (при |V| > 17 см/с) характерно наличие трех вет-

Рис. 2. Фото прямых и отраженных воли на встречном потоке; волнопродуктор размещен слева; направление потока указано стрелкой: a — вид сбоку, F=1,9 Гц, видны области I и III; δ — вид сверху, F=1,5 Гц, видна область II

вей: прямой гравитационной в области малых волновых чисел, где фазовая скорость волн $C = \omega/k$ и групповая $V_g = d\omega/dk$ направлены в одну сторону; обратной, где знаки C и V_g противоположны, и прямой капиллярной, где знаки C и V_g также положительны (рис. 1, *a*, точки 1, 3, 5 соответственно). Рассмотрим для примера эволюцию волно-

вого пакета с F=1,5 Гц на встречном потоке, переходя по мере изменения V с одной дисперсионной кривой на другую в соответствии с изочастотной характеристикой F=1,5 Гц (пунктирная прямая). Начальному положению при V=0 (на рис. 1/а не показано) соответствует $\lambda_0=70$ см; по мере увеличения V групповая скорость и длина волны падают. В точке 2 (скорость —26 см/с) происходит блокировка — остановка и отражение волн; соответственно в области с |V| < 26 см/с существуют две волны: прямая, для которой C, $V_g>0$ (область левее точки 2), и отражения, C>0 и $V_g<0$ (область правее точки 2). В точ-

Рис. 3. Расчетная зависимость $\lambda(V)$ для спутного и встречного потоков для частот 1,5; 2,0 и 3,0 Гц; пунктир — линии блокировки. Эксперимент — точки F=1,5 Гц, крестики — 2 Гц, кружки — 1,7 Гц. Арабские цифры у кривых означают частоту в Гц

ке 4 (V = -20 см/с) отраженная волна вторично отражается, превращаясь в прямую капиллярную волну (область правее точки 4). Таким образом, особенности дисперсионных кривых в рассматриваемом диапазоне — наличие трех ветвей — приводят к двойной блокировке волн, что вызывает существенную трансформацию исходного волнового пакета. На рис. 1, б приведена схема трансформации длин и направлений распространения волн для рассмотренного примера при линейном законе изменения скорости потока с расстоянием. Видно, что для того чтобы попасть из области нулевой скорости в область с |V| > 26 см/с, волна должна дважды отразиться. Аналогичным образом может быть рассмотрена трансформация волн на спутном течении — здесь, правда, наблюдается только одна точка блокировки. На рис. 2 приведены фотографии волн в разных областях, иллюстрирующие эффект блокировки на встречном течении: на рис. 2, а для волн с частотой 1,9 Гц видны область прямой гравитационной волны (область I) и область прямой капиллярной волны (111). На рис. 2, б представлена фотография об-

ласти II, в которой существуют прямые гравитационная и капиллярная волны и отраженная гравитационно-капиллярная волна. Для волны с частотой 1,5 Гц видны отраженные гравитационно-капиллярные и прямые капиллярные волны; прямые гравитационные волны на фото не видны. На рис. 2, а область II мала и не видна.

Дополним качественное рассмотрение эффекта блокировки волн оценкой изменения длины волны при движении ее на неоднородном потоке. На рис. З приведены зависимости $\lambda(V)$ для ряда частот F = const, полученные из дисперсионного соотношения в адиабатическом приближении и при линейном законе изменения V(x) на спутном (V > 0)И встречном (V < 0) потоках; область скоростей — 15 см/с < V < 20 см/с на рисунке не показана. На рис. 3 видны рассмотренные выше области существования прямых и отраженных волн; пунктирными линиями отмечены линии блокировки волн (І и ІІ для встречного течения, ІІ' — для спутного). Для встречного течения по мере уменьшения скорости потока и увеличения частоты волн ширина области, где возможна двойная блокировка, сужается: значения F=2,65 Гц и V=-17,8 см/с являются граничными. На рис. 3 нанесены результаты обработки нескольких рассмотренных выше фотографий; несмотря на значительную (±25%) погрешность в определении λ и V, наблюдается удовлетворительное согласие опытных и расчетных данных. Длина волны в области блокировки меняется более чем на 2 порядка! Таким образом, проведенные наблюдения подтверждают рассмотренный в [1-4] эффект блокировки поверхностных волн неоднородным течением.

Авторы благодарят А. Я. Басовича и В. И. Шриру за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Longuet-Higgins M. S., Stewart R. W. J. Fluid Mech., 1960, 8, N 4, p. 565, [2] Thomson J. A., West B. J. J. Phys. Oceanogr., 1975, 5, N 4, p. 736. [3] Воронович А. Г. Изв. АН СССР. Сер. ФАО, 1976, 12, № 8, с. 850. [4] Басович А. Я., Таланов В. И. Изв. АН СССР. Сер. ФАО, 1977, 13, № 7, с. 766. [5] Филлипс О. М. Динамика верхнего слоя океана. Л.: Гидрометеоиздат, 1980.

Поступила в редакцию 03.08.82

ВЕСТН. МОСК. УН-ЛА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 3.

УДК 621.315.592

ВЛИЯНИЕ АДСОРБЦИИ ВОДЫ НА КИНЕТИКУ ПЕРЕЗАРЯДКИ Медленных состоянии кремния

С. Н. Козлов, Н. Л. Левшин

(кафедра общей физики для химического факультега)

Ранее было показано, что основные закономерности медленной релаксации заряда на поверхности германия хорошо описываются электронно-колебательной моделью перезарядки медленных состояний* (MC) [1]. С целью установления общности развитых представлений в настоящей работе проведено детальное исследование кинетики перезарядки MC на поверхности кремния в широком диапазоне времени.

* Медленными называются электронные состояния на поверхности полупроводника, характеризующиеся аномально малыми сечениями захвата носителей заряда (10⁻²⁶—10⁻²⁸ см²).