УДК 510.6:53.081

О ПРИМЕНЕНИИ ТРЕХЗНАЧНОЙ, ЛОГИКИ ДЛЯ АНАЛИЗА ОТНОШЕНИЙ МЕЖДУ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ

В. И. Шестаков

(кафедра общей физики для физического факультета)

§ 1. Равенство W=V физических величин (ФВ) W и V обычно считают бессмысленным, если равенство [W]=[V] их размерностей [W] и

[V] в одной и той же системе физических единиц не верно.

Классическая (двузначная) логика B_2 имеет дело лишь с истинными или ложными высказываниями. Поэтому строгая теория равенств и неравенств ФВ возможна лишь при использовании трехзначной логики, оперирующей не только с истинными и ложными, но также и с бессмысленными высказываниями.

§ 2. В логике Бочвара [1, 2], обозначаемой ныне символом B_3 , переменные A, B, \dots обозначают высказывания с тремя возможными истинностными значениями: T — «истина», F — «ложь» и N — «бессмыслица» [1]. Высказывание с истинностным значением T или F называется [1] предложением. «Очевидно, что предложение есть частный случай высказывания. Всякое высказывание или не имеет смысла, или истинно, или ложно» [1, с. 288]. Классическое исчисление предложений — частный случай исчисления высказываний (ИВ) — элементарной части B_3 .

Все операции ИВ определимы [3] через две основные операции: «антидизъюнкцию» $A \cup B$ высказываний A и B (обозначавшуюся ранее [3] символом $p \Psi q$) и утверждение («внешнее утверждение» [1]) $\vdash A$ высказывания A. Эти операции определяются здесь соответственно таблицами 1 и 2 — таблицами истинностных значений высказываний: «ни A, ни B» и «A верно». Пунктиром в этих таблицах выделены определения этих же операций для предложений.

Таблица 1

 U
 B

 A
 T
 F
 N

 T
 F
 F
 N

 F
 F
 T
 N

 N
 N
 N
 N

Таблица 2

A	$\vdash A$
T	T
F .	F
N	F

Определения всех остальных нужных нам операций ИВ приведены в табл. 3, где вместо первоначального [1] знака \overline{D} равенства по определению используется современный знак \Longrightarrow .

Операцию $\overline{\mathbb{U}}$ и все операции, определимые лишь через нее, будем называть, следуя [1], «классическими», а все остальные операции ИВ — «неклассическими». Первые 5 операций табл. 3 являются классическими, а остальные — неклассическими.

Название операции	Определение операции	«Чтение» [1] символа операции
Отрицание	$\sim A \rightleftharpoons A \overline{U} A$	«не-А»
Конъюнкция	$A \cap B \rightleftharpoons \sim A \overline{\cup} \sim B$	«А и В»
Дизъюнкция	$A \cup B \rightleftharpoons \sim (A \cup \overline{B})$	«А или В»
Импликация ′	$A \supset B \rightleftharpoons \sim A \cup B$	«если А, то В»
Биимпликация	$A\supset \subset B \Longrightarrow (A\supset B)\cup (B\supset A)$	«А если и только если В»
Опровержение	$\bar{A} \rightleftharpoons \sim \vdash A$	«А не верно»
Утверждение отрицания	$\exists A \rightleftharpoons \vdash \sim A$	«А ложно»
Утверждение бессмыслен- ности	$\downarrow A \rightleftharpoons \vdash A \overline{\bigcup} \neg A$	«А бессмысленно»

Операции \cap и \sim являются основными в [1, 2] и определяются таблицами истинностных значений, а операции $\overline{A} \cap A$ — формулами [2]: (D_{10}) , (D_9) . Лишь операции $A \supset \subset B$, \overline{A} и $\cap A$ определяются в табл. З так же, как и в [2]. Все остальные операции определены в ней несколько иначе, чем в [1, 2], хотя символы и их «чтение» таковы же, как и в [1].

Названия первых четырех классических операций в [1, 2] заменены здесь наименованиями соответствующих операций классического исчисления предложений. Операция $A \supset \subset B$, соответствующая эквивалентности («эквиваленции») предложений в классическом исчислении предложений и называемая часто «классической эквивалентностью», названа здесь биимпликацией.

Для большей краткости символических выражений условимся: 1) опускать знак \cap , когда это не может вызвать недоразумений, и 2) опускать внешние скобки, содержащие в себе конъюнкции. Следуя этим условиям, мы можем, например, выражение $(A\cap B) \cup (B\cap C)$ заменить выражением $AB \cup BC$ подобно тому, как в обычной алгебре выражение $(a \cdot b) + (b \cdot c)$ обычно заменяют выражением ab + bc.

Все неклассические операции ИВ являются предложениями, т. е. имеют смысл, когда их операнды (объекты операции) принимают любые истинностные значения, а классические операции ИВ имеют смысл,

лишь когда все их операнды — предложения.

Любую операцию ИВ можно определить через операции, содержащиеся в табл. 1—3. Например, операцию A = B - «A эквивалентно B », определенную в [2] формулой (D_8), можно определить (используя принятые выше условия) через операции: \vdash , \lnot , \downarrow , \cap и \Downarrow следующей формулой:

$$A = B \Rightarrow \vdash A \vdash B \cup \neg A \neg B \cup \downarrow A \downarrow B.$$

Следует отметить, что «эквивалентность» в исчислении высказываний играет роль «математического равенства» [1, с. 292]. После того как некоторый символ определен посредством некоторого равенства по определению, его знак можно заменить знаком \equiv , и полученная таким образом эквивалентность будет верной по определению. Произведя такую замену в приведенном выше определении операции $A \equiv B$, получим следующую верную по определению эквивалентность:

$$(A \equiv B) \equiv \vdash A \vdash B \cup \neg A \neg B \cup \downarrow A \downarrow B.$$

В случае, если $\sim \downarrow A$ и $\sim \downarrow B$, т. е. если A и B предложения, то, как легко проверить, $(A \equiv B) \equiv (A \supset \subset B)$, $\vdash A \equiv A$, $\overline{A} \equiv \neg A \equiv A$ и вообще все операции над предложениями сводятся к классическим операциям над ними.

Короче говоря, ИВ над предложениями сводится к классическому исчислению предложений, т. е. к двузначной булевой алгебре, роль равенства в которой исполняет эквивалентность высказываний, а операциями булева сложения, булева умножения и булева дополнения служат соответственно операции ⋃, ⋂ и ~.

Формула в ИВ считается доказуемой, если при любых истинностных значениях ее членов ее истинностное значение есть T. Она считается противоречием, если не принимает истинностного значения T

ни при каких истинностных значениях ее членов.

В ИВ принят за аксиому следующий принцип вывода: если Я и \mapsto Я \Rightarrow доказуемые формулы, то \mathfrak{B} доказуемая формула.

§ 3. Используя символы § 2, можем написать формулу

$$\overline{[W]} = \overline{[V]} \supset \downarrow (W = V), \qquad (a_0)$$

выражающую высказывание: «если равенство [W]=[V] не верно, то равенство W=V бессмысленно», т. е. резюме первого абзаца § 1.

Эту формулу можно считать одним из основных постулатов теории размерностей ΦB . Этот постулат обычно неявно используется при проверке размерностей ΦB . Проверка любого равенства W=V, полученного при решении какой-либо физической задачи, обычно начинается с проверки равенства [W]=[V] размерностей [W] и [V] величин W и V. Если в результате этой проверки окажется, что равенство [W]=[V] не верно, то, в полном согласии с формулой (a_0) , приходят к выводу, что равенство W=V бессмысленно.

Следует, однако, заметить, что равенство W=V может оказаться бессмысленным и тогда, когда равенство [W]=[V] верно в некоторой системе физических единиц. Например, равенство A=M, где A— работа, а M— момент силы, бессмысленно, хотя \vdash ([A]=[M]) в любых применяемых системах физических единиц.

Как видим, условие [W] = [V] в общем случае является лишь достаточным, но не необходимым условием бессмысленности равенства W = V. Иначе говоря, формула $\downarrow (W = V) \supset [W] = [V]$ в общем случае ложна.

В силу определения операции \bar{A} опровержения A и закона контрапозиции $(P \supset B) \equiv (\sim B \supset \sim P)$, справедливого для любых высказываний P и B, формула (a_0) эквивалентна формула

$$\sim \downarrow (W = V) \supset \vdash ([W] = [V]), \qquad (a'_0)$$

утверждающей: «если равенство W=V имеет смысл, то равенство [W]=[V] верно». Иначе говоря, для равенства размерностей ΦB достаточно, чтобы равенство самих ΦB имело смысл.

Но, как следует из определения операции $\downarrow A$, $\sim \downarrow A \equiv \vdash A \cup \lnot A$

и, следовательно, формула (a_0) эквивалентна формуле

$$\vdash (W = V) \cup \neg (W = V) \supset \vdash ([W] = [V]),$$

утверждающей: «если равенство W=V величин W и V верно или ложно, то равенство [W]=[V] размерностей этих величин верно». А если равенство [W]=[V] не верно, то равенство W=V не верно и не ложно, т. е. бессмысленно, что и утверждает формула (a_0) .

§ 4. Отношение неравенства $W \neq V$ действительных или комплексных величин W и V определяется формулой

$$(\mathscr{W} \neq V) \rightleftharpoons \sim (\mathscr{W} = V), \tag{DI}$$

где ~ — знак операции отрицания.

На основании формулы (23) [1]: $\downarrow A = \downarrow \sim A$ получаем эквивалентность

$$\downarrow (W = V) \equiv \downarrow (W \neq V), \tag{1}$$

в силу которой из формул (a_0) и (a_0') следуют формулы

$$[\overline{W}] = [V] \supset \downarrow (W \neq V), \quad (a_1) \qquad \sim \downarrow (W \neq V) \supset \vdash ([W] = [V]). \quad (a'_1)$$

Таким образом, если равенство [W]=[V] не верно, то бессмысленно и равенство и неравенство величин W и V, а истинность равенства [W]=[V] имеет место, когда и равенство и неравенство величин W и V имеет смысл. Неравенства W>V, W<V, W>V и W<V определены лишь для действительных ΦB и потому лишь для таких величин мы имеем право заменять в формулах (a_1) и (a_1') неравенство $W\neq V$ его частными случаями, указанными выше.

§ 5. Формулы (a_0) , (a_0') , (a_1) , (a_1') нетрудно обобщить и на кортежи $\mathbf{W} = (W_1, ..., W_n)$, $\mathbf{V} = (V_1, ..., V_n)$ любых $\Phi B : W_1, ..., W_n$ и $V_1, ..., V_n$, имеющих одинаковые размерности. Для кортежей \mathbf{W} и \mathbf{V} , все компоненты которых имеют одинаковую размерность, их размерности $[\mathbf{W}]$ и $[\mathbf{V}]$ совпадают с размерностью каждой их компоненты и обобщения формул (a_0) , (a_0') , (a_1) , (a_1') имеют, очевидно, следующий вид:

$$[W] = [V] \supset \downarrow (W = V), \quad (a_0) \qquad \sim \downarrow (W = V) \supset \vdash ([W] = [V]), \quad (a'_0)$$

$$[\overline{W]} = \overline{[V]} \supset \downarrow (W \neq V), \quad (a_1) \qquad \sim \downarrow (W \neq V) \supset \vdash ([W] = [V]) \cdot \quad (a_1^{'})$$

Эти формулы верны, в частности, и для любых векторов W и V.

Если, например, V—скорость, а W—ускорение некоторого тела, то $\overline{[W]}=\overline{[V]}$, а отсюда в силу принципа вывода ИВ из (a_0) и (a_1) следует \downarrow (W=V) и \downarrow ($W\neq V$), т. е. бессмысленность равенства W=V и неравенства $W\neq V$. Но если W и V—скорости двух различных тел, то и равенство и неравенство величин W и V имеют смысл, и в силу принципа вывода ИВ из (a_0') и (a_1') следует \vdash ([W]=[V]): из (a_0') —в случае W=V, а из (a_1') —в случае $W\neq V$.

Формулы (a_0) — (a_1') верны для кортежей W и V любых ΦB , и в частности, когда $W = V^{-1}$, где V^{-1} — обращение кортежа V, определяе-

мое формулой (D5) [4]:

$$\mathbf{V}^{-1} = (V_1^{-1}, \ldots, V_n^{-1}).$$

§ 6. Всякую действительную или комплексную величину V можно представить [4] в следующем виде:

$$V = ,, V^{"} \cdot V_e, \tag{2}$$

где "V" — числовое значение, а V_e — единица величины V. .

Примечание. Используя обозначения [5], величину V можно представить также и в следующем виде:

$$V = \{V\}[V],$$

где $\{V\}=,V''$, а $[V]=V_e$, но мы не будем применять здесь этих обозначений, ибо символ $\{V\}$ обычно используется для обозначения множества, содержащего лишь один элемент, а символ [V] используется здесь для обозначения размерности величины V.

В любой применяемой системе физических единиц размерность любого числа z считается равной единице, т. е.

$$[z] = 1, \tag{20}$$

где z — любое комплексное, включая и несобственное число ∞ и, в частности, любое действительное число.

В силу этой формулы получаем равенства

$$[V] = [,,V] = 1,$$
 (3)

верные для всякой безразмерной величины V, т. е. величины, удовлетворяющей равенству V=,V''. Равенство [,,V'']=1 верно и в случае, когда ,V'' имеет неопределенное значение вида: $0/0, \infty/\infty, 0\cdot\infty, \infty\cdot 0$ и т. п., ибо после раскрытия этих неопределенностей получается число.

Из (3) следует, что

$$[V] = [,,V'' \cdot V_e] = [,,V''] \cdot [V_e] = 1 \cdot [V_e] = [V_e], [V] = [V_e]. \tag{4_0}$$

В частности, если V — безразмерная величина, то $V_e = 1$ и, следовательно, $\{V\} = 1$.

§ 7. Как известно [5, с. 14], все компоненты любого вектора должны иметь одинаковые размерности и измеряться в одних и тех же единицах. Поэтому

$$[\mathbf{V}] = [\mathbf{V}_e], \tag{4}$$

$$[\mathbf{V}] = [|\mathbf{V}|] = [V], \tag{5}$$

т. е. размерность всякого вектора равна размерности его абсолютной величины. Из равенств (4) и (5) следует, что для любых векторов ${\bf W}$ и ${\bf V}$

$$([\mathbf{W}] = [\mathbf{V}]) \equiv ([\mathbf{W}] = [V]) \equiv ([\mathbf{W}_e] = [V_e]),$$
 (6)

а отсюда следует формула

$$[\overline{\mathbf{W}}] = [\overline{\mathbf{V}}] \equiv [\overline{W}] = [\overline{V}] \equiv [\overline{W_e}] = [\overline{V_e}], \tag{7}$$

в силу которой формула [W] = [V] заменима в (a_0) и (a_1) формулами [W] = [V] и $[W_e] = [V_e]$, а ее отрицание $\vdash ([W] = [V])$ заменимо в (a_0') и (a_1') формулами $\vdash ([W] = [V])$ и $\vdash ([W_e] = [V_e])$. В частности, из того, что равенство [метр] = [секунда] не верно, из формулы (a_0) в силу принципа вывода ИВ следует, что $\downarrow (s=t)$, где s — путь, проходимый каким-либо телом за время t. Точно так же из формулы (a_0) следует, что

$$\downarrow (\mathbf{V}^{-1} = \mathbf{V}), \downarrow (V^{-1} = V), \tag{8}$$

ибо $\overline{[V^{-1}]} = \overline{[V]}$ и $\overline{[V^{-1}]} = \overline{[V]}$ для любого вектора $V \neq V$.

Для самих ФВ W и V формулы, аналогичные формулам (4)—(7), неверны. Из физических соображений ясно, что \downarrow (V = |V|), \downarrow (V = V), \downarrow $(V = V_e)$, \downarrow $((W, V) = W \times V)$, где (W, V) — скалярное произведение векторов W и V, а $W \times V$ — их векторное произведение. Очевидно также, что

$$\downarrow$$
 (W < V), \downarrow (W > V), \downarrow (W \geqslant V), \downarrow (W \lessdot V), \downarrow (W \triangleleft V), \downarrow (W \triangleright V)

ибо отношения <, >, >, <, <, \Rightarrow для векторов не определены. Вообще, всякое отношение между ΦB , скалярными, векторными или матричными, которое не определено, можно считать бессмысленным как в случае одинаковой, так и в случае различной размерности ΦB .

§ 8. Если все элементы матрицы ${f V}$ измеряются одной и той же единицей ${f V}_e$, то

$$\mathbf{V} = \|v_{ik}\| = \|\cdot, v_{ik} \cdot V_e\| = \|\cdot, v_{ik} \cdot V_e\|$$

и мы можем принять следующее определение размерности матрицы:

$$[\mathbf{V}] = [V_e]. \tag{DII}$$

Примерами таких матриц могут служить матрицы импедансов $\|Z_{ih}\|$ и матрицы адмиттансов $\|Y_{ih}\|$ четырехполюсников. Для такого рода матриц справедливы, очевидно, формулы, аналогичные формулам $(a_0)-(a_1)$.

Но, как и кортежи в общем случае, матрицы могут иметь элементы различной размерности, как, например, матрица A цепных параметров четырехполюсника. Определение (DII) размерности матрицы и аналогичное определение размерности кортежа, очевидно, неприменимо в общем случае. Проблема использования логики B_3 для анализа отношений между кортежами и матрицами с элементами различной размерности требует особого рассмотрения.

СПИСОК ЛИТЕРАТУРЫ

[1] Бочвар Д. А. Матем. сб., 1938, 4(46), № 2, с. 287. [2] Бочвар Д. А. Матем. сб., 1943, 12(54), № 3, с. 353. [3] Шестаков В. И. В кн.: Логические исследования. М.: Изд-во АН СССР, 1959, с. 315. [4] Шестаков В. И. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1979, 20, № 6, с. 47. [5] Камке Д., Кремер К. Физические основы единиц измерения. М.: Мир, 1980.

Поступила в редакцию 27.09.82

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 4

УДК 538.574

КРАЕВЫЕ СТОХАСТИЧЕСКИЕ ЗАДАЧИ И ИНТЕГРАЛЫ ПО ТРАЕКТОРИЯМ

Л. И. Приходько, А. Н. Стародумов

(кафедра общей физики и волновых процессов)

Во многих экспериментах, связанных с распространением волн в случайно-неоднородных средах, информацию о рассеивающей можно получить лишь по данным обратного рассеяния. Если при этом флуктуирующая среда достаточно протяженна, то необходимо учитывать эффекты многократного рассеяния назад. Учет обратного рассеяния резко усложняет задачу. Это связано с тем, что при рассеянии вперед поле на границе флуктуирующей среды обычно принимается равным падающему и процессы рассеяния хорошо описываются задачей с начальными условиями (метод параболического уравнения, приближение марковского процесса и др.). В теории многократного обратного рассеяния поле на границе случайной среды является функционалом от характеристик среды, что приводит к необходимости решать краевую стохастическую задачу. В настоящее время способы решения таких задач по существу ограничиваются методом «инвариантного погружения» [1]. Идея этого метода состоит в постановке вспомогательной задачи Коши для исходной краевой задачи; решения задач Коши удовлетворяют принципу причинности, что позволяет использовать приближение марковских процессов. С помощью метода «инвариантного по-