вало ожидать, уже не столь значителен, однако не исключено, что использование каркасных функций общего вида сможет заметно ускорить сходимость и в этих случаях.

СПИСОК ЛИТЕРАТУРЫ

[1] Schmid E. W. Nucl. Phys., 1962, 32, р. 82. [2] Kalos M. H. Phys. Rev., 1962, 128, р. 1791. [3] Delves L. M., Blatt J. M. Nucl. Phys., 1967, A98, р. 503. [4] Nakaichi-Maeda S. et al. Progr. Theor. Phys., 1980, 64, р. 1315. [5] Strayer M. R., Sauer P. U. Nucl. Phys., 1977, A231, р. 1. [6] Kukulin V. I., Krasnopolsky V. M. J. Phys., 1977, G3, р. 795. [7] Колесников Н. Н., Тарасов В. И., Старосотников М. И. Деп. ВИНИТИ, № 3832—80. [8] Baker G. A. et al. Phys. Rev., 1962, 125, р. 1754. [9] Колесников Н. Н., Тарасов В. И. Ядерная физика, 1982, 35, с. 619. [10] Аблап I. R., Тапд Y. С. Phys. Rev., 1968, 175, р. 1337. [11] Ati S., Bodmer A. R. Nucl. Phys., 1966, 80, р. 99.

Поступила в редакцию 04.10.82

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 5

УДК 537.56

РАСЧЕТ СЕЧЕНИЙ ОДНО- И ДВУКРАТНОЙ ИОНИЗАЦИИ ГЕЛИЯ ПРОТОНАМИ

В. А. Сидорович, В. С. Николаев

(НИИЯФ)

Ранее [1] было показано, что полные экспериментальные сечения ионизации водорода и гелия быстрыми ионами, атомами и молекулами, содержащими не более двух электронов, при относительных скоростях сталкивающихся частиц $v \ge 6 \cdot 10^8$ см/с в пределах 20% совпадают с вычисленными в приближении Борна с кулоновскими матричными элементами нонизационных переходов. Для дальнейшего изучения возможностей использования этого приближения в настоящей работе рассчитаны сечения одно- и двукратной ионизации атомов гелия σ^{i1} и σ^{i2} протонами с энергией E от 0,01 до 5 МэВ. Расчет выполнен в приближении независимых электронов, в котором рассматриваемые нами сечения σ^{in} (n=1 и 2) записываются в виде [2, 3]

 $\sigma^{in} = 2\pi \int P^{in}(b) \, b \, db \tag{1}$

при

$$P^{i1}(b) = 2w_1(1 - w_2), \qquad (2)$$

$$P^{i2}(b) = w_1 w_2, \qquad (3)$$

где $P^{in}(b)$ — вероятность *n*-кратной ионизации при заданном прицельном параметре *b*, w_1 и w_2 — вероятности перехода в континуум первого и второго электронов. Если вероятности берутся в первом приближении Борна, то формулы (1)—(3) соответствуют упрощенному второму борновскому приближению.

Борновские вероятности $w_m^{\rm b}$ (m=1 и 2) вычислялись по методу, который основан на использовании известного выражения для борновского матричного элемента M_m ионизационного перехода водородоподобной системы и был применен впервые Шиффом [4] при расчете вероятностей перезарядки, а в расчетах вероятностей ионизации использовался в работах [5—15]. Однако в [5—13] при расчете величин $w^{\rm b}$ была допущена ошибка [15—16]. Эффективные заряды ядер Z_m^* в матричных элементах $M_m^{\rm b}$, как и в работе [1], определялись из энергии связи удаляемых электронов, которая считалась одинаковой для каж-

38

дого из электронов при расчете вероятности двукратной ионизации, так что для P^{i1} получим $Z_1^* = 1,345$ и $Z_2^* = 2$, а для P^{i2} $Z_1^* = Z_2^* = 1,69$.

Поскольку в ряде случаев борновские вероятности w_m^B превышают единицу, сечения σ^{i1} и σ^{i2} были рассчитаны также с вероятностями $\omega^p = 1 - \exp(-\omega^B)$ и $\omega^a = [1 - \exp(-\sqrt{\omega^B})]^2$. Величины ω^p соответствуют «распадной» модели, которая аналогична «абсорбционной» модели, использованной в [17] при расчете сечения перезарядки, а ω^a соответствует распадной модели для амплитуды вероятности.

Экспериментальные данные о сечениях чистой одно- и двукратной ионизации $\sigma^{i1} = \sigma_{11}^{01}$ и $\sigma^{i2} = \sigma_{11}^{02}$, так же, как и о сечениях ионизации с перезарядкой о1002 и сечениях чистой одно- и двукратной перезарядки σ_{10}^{01} и $\sigma_{1,-1}^{02}$, имеются, к сожалению, только при энергиях E < 50 кэВ [18], которые недостаточно высоки для применения борновского приближения. (Верхними индексами в σ_{11-s}^{0t} обозначены заряды атомов гелия до и после соударения, а нижними — аналогичные заряды быстрых частиц.) При E>150 кэВ имеются экспериментальные данные о сечениях образования свободных электронов $\sigma_e = \sigma_{11}^{01} + \sigma_{10}^{02} + 2\sigma_{11}^{02}$ и медленных одно- и двухзарядных ионов гелия $\sigma^{+1} = \sigma_{11}^{01} + \sigma_{10}^{01}$ и $\sigma^{+2} = \sigma_{11}^{02} + \sigma_{11}^{01}$ $+ \sigma_{10}^{02} + \sigma_{1,-1}^{02}$, а также сечениях одно- и двукратной перезарядки $\sigma_{10} = \sigma_{10}^{01} + \sigma_{10}^{02} \text{ M } \sigma_{1,-1} = \sigma_{1,-1}^{02}$ [1, 18—24]. При высоких энергиях Е из-за малости сечений перезарядки о10 и о1.-1 сечения однократной ионизации σ_{l1}^{01} заключены между мало различающимися величинами $\sigma_e - (\sigma^{+2} - \sigma_{1,-1}) = \sigma_{11}^{01} + \sigma_{11}^{02}$ и $\sigma_e - 2(\sigma^{+2} - \sigma_{1,-1}) = \sigma_{11}^{01} - \sigma_{10}^{02}$, а сечения двукратной ионизации практически совпадают с сечениями σ^{+2} . Экспериментальные значения $\sigma_e = 1,5 (\sigma^{+2} - \sigma_{1,-1}) \pm 0,5 (\sigma^{+2} - \sigma_{1,-1})$ и σ^{+2} вместе с результатами теоретических расчетов сечений оⁱ¹ и оⁱ² представлены на рисунке.

Из рисунка видно, что при E = 10-50 кэВ экспериментальные значения σ_{11}^{01} и σ_{12}^{02} меньше рассчитанных в настоящей работе соответственно не более чем в 2 раза и в 2,5—10 раз. При этих энергиях имеем $\sigma_{11}^{01} < \sigma_{10}^{01}$, а учет перезарядки требует преобразования базисной системы состояний, использованной при рассмотрении ионизации. В связи с этим отметим, что при E = 25-50 кэВ рассчитанные значения σ_p^{12} в пределах 10—20% совпадают с суммой экспериментальных сечений двукратной ионизации σ_{11}^{02} и ионизации с перезарядкой совпадают с суммой экспериментальных сечений двукратной ионизации σ_{11}^{02} и ионизации с перезаряд-кой σ_{10}^{02} .

При E > 100 кэВ, когда сечения перезарядки не менее чем в 4 раза меньше экспериментальных сечений однократной ионизации σ^{i1} , последние практически совпадают с вычисленными значениями σ_p^{i1} . Экспериментальные значения σ^{+2} при E = 150 и 1000 кэВ практически совпадают с вычисленными значениями σ_a^{i2} , а при E = 200-500 кэВ на 15-30% ниже последних. (При E = 200 кэВ эти сечения в 10³ раз превышают сечения двукратной перезарядки $\sigma_{1,-1}$ и составляют ~0,25 σ_{10} .) При энергии протонов E = 2-4 МэВ экспериментальные сечения σ^{+2} в 1,5-2 раза болыше вычисленных нами значений σ^{i2} и близки к сечениям σ^{i2} , вычисленным в [25] в первом борновском приближении, которое описывает освобождение второго электрона в результате изменения среднего поля атома после удаления из него первого электрона, т. е. вследствие «встряски».

При E≥5 МэВ сечение σⁱ² должно определяться главным образом «встряской», так как первое борновское приближение приводит к более слабой энергетической зависимости сечений, а при E<1 МэВ в

двукратной ионизации доминирует рассмотренный здесь механизм независимого удаления атомных электронов в результате взаимодействия каждого из них с быстрым протоном. Превышение рассчитанных значений σ^{i2} над экспериментальными величинами σ^{+2} при $E \sim 0.2$.

∴0,5 МэВ связано, видимо, с пренебрежением в настоящих расчетах механизмом встряски, который, как следует из расчетов Олдхэма [25], при указанных энергиях может оказывать заметное влияние на величину σ^{t2}.

Сечения одно- и двукратной ионизации гелия протонами. Теоретические сечения однократной иони-зации оⁱ¹: 2, 3 и 5 — наши данные, 4 — по результатам [26]. Сечения двукратной ионизации о¹²: 7 [28], 8 [10], 9 [27], 10, 11 н 12 — наши данные, 13 — по результатам [26], 16, 17 н 18 [25]. Кривые 2 н 10, 3 н 11, 5 и 12 — результаты для ш^Б, ш^р и *w^a* соответственно. Значки — экспериментальные сечения. В верхней части рисунка — значения σ^{i1} : +[18]; О — [19] при E< <200 кэВ и [20] при E>1 МэВ; — [21]. В нижней части рисун- $\sigma_{11}{}^{02}$ ка при Е ≤50 кэВ: 0 ⁰² [18], [18]; при $[18] \times - \sigma_{10}^{02}$ $(\sigma_{10}^{02} + \sigma_{11}^{02})$ E >>150 кэВ — значения σ+2: ● [21]; 0 [22]; + [23]. Точечные линии — экспериментальные сечения перезарядки: 1 [18] и 6 [24] -σ₁₀, *14* [18] и *15* [24] — σ_{1,-1}

Расчеты, выполненные на основе классической механики по рецептам Грижинского [26], приводят к сечениям двукратной ионизации, которые при E=150-700 кэВ превышают экспериментальные значения σ^{+2} на величину от 5% до 50%, а при E=2-4 МэВ больше экспериментальных в 2,5 раза. В то же время сечения однократной ионизации σⁱ¹, вычисленные Грижинским [26], на 10-20% ниже экспериментальных при E=150-300 кэВ и практически совпадают с экспериментальными при E = 0,7-4 МэВ. Значения σ^{i2} , вычисленные в рамках классической механики Кумаром и Роем [27], при E=0,15-2 МэВ в 1,7—3 раза больше экспериментальных величин о+2. Значения о¹², вычисленные в приближении парных столкновений Хансеном [28], при E~200 кэВ превышают экспериментальные значения σ+2 в 6 раз. Таким образом, при энергиях протонов Е=0,15-1,00 МэВ наиболее близкими к экспериментальным величинам σ^{+2} оказываются вычисленные в настоящей работе значения σ_{*}^{l2} .

СПИСОК ЛИТЕРАТУРЫ

[1] Николаев В. С. и др. ЖТФ, 1978, 48, № 7, с. 1399. [2] Hansteen J. M., Mosebekk O. P. Phys. Rev. Lett., 1972, 29, N 20, p. 1361. [3] Sidorovich V. A. J. Phys. B, 1981, 14, N 25, p. 4805. [4] Schiff H. Can. J. Phys., 1954, 32, N 6, p. 393. [5] Каминский А. К., Николаев В. С. В кн.: тез. V ВКЭАС. Ужгород, 1972, с. 69. [6] Каминский А. К., Николаев В. С., Попова М. И. В кк.: тез. докл. Всесоюз. семинара по теории атомов и атомных спектров. Ташкент, 1974, с. 45. [7] Beloshitsky V. V., Nikolaev V. S. Phys. Left., 1975, 51 A, N 2, p. 97. [8] Катіпsky А. К., Nikolaev V. S., Popova M. I. Phys. Lett., 1975, 53 A, N 5, p. 419. [9] Каминский А. К., Николаев В. С., Попова М. И. Вестн. Моск. ун-та. Сер. Физ. Астрон., 1976, 17, № 6, с. 698. [10] Катіпsky А. К., Popova M. I. J. Phys. B, 1976, 9, N 7, p. L177. [11] Катіпsky А. К., Lovisov S. V., Popova M. I. In.: Proc. 10-th Int. Conf. on Physics of Electronic and Atomic Collisions. Paris, 1977, v. 1, p. 56. [12] Катіпsky А. К., Lovtsov S. V., Popova M. I. Phys. Lett., 1977, 61 А, N 5, p. 308. [13] Каминский А. К., Ловиов С. В., Попова М. И. В кн.: Тр. VIII Всесоюз. сов. по физ. взаимодействия заряж. частиц с монокристаллами. Ч. I. М., 1977, с. 59. [14] Каминский А. К., Попова М. И. В кн.: Тр. IX Всесоюз. сов. по физ. взаимодействия заряж. частиц с кристаллами. Ч. III. М., 1979, с. 129. [15] Sidorovich V. A. et al. J. Phys. B, 1980, 13, N 23, p. L583. [16] Та и 15 јег g К. J. Phys. B, 1977, 10, p. L341. [17] R yuiuku H., Watanabe T. Phys. Rev. A, 1978, 18, N 5, p. 2005. [18] Афросимов В. В. и др. ЖТФ, 1969, 39, № 1, с. 159. [19] Соловьев Е. С. и др. ЖЭТФ, 1962, 42, № 3, с. 659. [20] Пивовар Л. И., Левченко Ю. 3. ЖЭТФ, 1967, 52. № 1, с. 42. [21] Рискеtt L. J., Магtin D. W. Phys. Rev. A, 1970, 1, N 5, p. 1432. [22] Левченко Ю. 3. Канд. дис. Харьков, Физ.-тех. ин-т. АН УССР, 1974. [23] Wexler S. J. Chem. Phys., 1964, 41, N 6, p. 1714; J. Chem. Phys., 1966, 44, N 5, p. 2221. [24] Таwага H., Russek A. Rev. Mod. Phys., 1973, 45, N 2, p. 178. [25] Oldham W. J. B. Phys. Rev., 1968, 166, N 1, p. 34. [26] Gryzinski M. Phys. [25] Oldham W. J. B. Phys. Rev., 1968, 166, N 1, p. 34. [26] Gryzinski M. Phys. [25] Oldham W. J. B.

Поступила в редакцию 13.10.82

ВЕСТН. МОСК. УН-ТА. СЕ́Р. 3. ФИЗИКА: АСТРОНОМИЯ, 1983, Т. 24, № 5

УДК 535.345.67

ОБ ОСОБЕННОСТЯХ ПОГЛОЩЕНИЯ В СИСТЕМАХ МНОГОСЛОЙНЫХ ИНТЕРФЕРЕНЦИОННЫХ СВЕТОФИЛЬТРОВ. ЭФФЕКТИВНЫЕ СИСТЕМЫ СВЕТОФИЛЬТРОВ

А. Ю. Клементьева, Л. С. Корниенко, А. В. Гришкин

(кафедра оптики и спектроскопии)

Многослойные интерференционные светофильтры, находящие широкое применение в новом приборостроении, имеют в ряде случаев значительные потери света в полосе пропускания. Световые потери связаны с наличием слабого поглощения и рассеяния в слоях. Они возникают также при нарушении симметрии системы; в этом случае потери света происходят за счет отражения.

Изучение влияния поглощения на свойства многослойных систем показывает, что спектральное поглощение $A(\lambda)$ носит сложный интерференционный характер, сильно избирательно по спектру и зависит от структуры покрытия. Полосы пропускания светофильтров, обусловленные наличием в системе резонансных слоев с целочисленным значением полного порядка интерференции для определенных длин волн, могут различаться величиной коэффициента пропускания в зависимости от структуры покрытия и от способов включения тех или иных резонансных слоев. Изучение поглощения в системах имеет целью выявить конструкции светофильтров с заданной шириной полосы $2\delta\lambda$, имеющих бо́льшую величину T_{max} при заданных реальных физических параметрах слоев (коэффициенты преломления n_i и экстинкции χ_i).