На рисунке, а приведены формы согласующих стержней. Спектральные характеристики цилиндрической согласующей системы и вновь полученных приведены на рисунке, б. Из графиков видно, что стержень, согласующий волноводы на частоте, соответствующей значению k=2,1, имеет несколько более широкую спектральную характеристику, чем четвертьволновый цилиндрический стержень. А второй полученный стержень (k=1,9), обладая меньшей относительной длиной (отношение l_0 к длине волны согласования), имеет несколько более узкую спектральную характеристику.

СПИСОК ЛИТЕРАТУРЫ

[1] Именитова Е. В., Чернышен К. В. Вестн. Моск. ун-та. Сер. Физ., Астрон., 1981, 22, № 4, с. 37. [2] Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.

Поступила в редакцию 30.12.82

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 6

УДК 541.144.7

ТЕОРЕТИЧЕСКИЙ РАСЧЕТ МИГРАЦИИ ЭНЕРГИИ. ПРИ ФОТОСИНТЕЗЕ Для различных моделей организации светособирающей матрицы

Е. М. Мелихова, А. К. Кукушкин

(кафедра биофизики)

Аппарат фотосинтеза высших растений и других фотосинтезирующих организмов содержит агрегаты пигментных молекул, поглощающих свет и доставляющих запасенную энергию к фотохимическим реакционным центрам. В литературе обсуждаются два типа механизмов, которые могут объяснить высокую скорость переноса энергии и его направленность к реакционным центрам. Экситонный механизм описывает перенос энергии в системе идентичных молекул (типа молекулярных кристаллов), скорость его сопоставима со скоростью колебательной релаксации (10^{13} c⁻¹). Миграция носит характер ненаправленных блужданий. По механизму Фёрстера — Галанина происходит более медленный перенос энергии. Его скорость сопоставима со скоростями излучательной и безызлучательной дезактивации и определяется интегралом перекрывания спектра излучения донора и спектра поглощения акцептора, расстоянием между молекулами и их взаимной ориентацией. Когда донор и акцептор отличаются по спектральным свойствам, перенос принимает направленный характер (в сторону молекулы с более низким возбужденным уровнем). Расчет миграции энергии для различных моделей организации светособирающей матрицы и сравнение с экспериментальными данными по флуоресценции может помочь в выяснении того, какой механизм переноса энергии реализуется в действительности при фотосинтезе.

В 1969 г. Монтролл рассмотрел задачу переноса энергии по светособирающей пигментной матрице в рамках теории случайных блужданий возбуждения по решетке [1]. При этом рассматривалась решетка из *М* точек с ловушкой в начале координат и с периодическими граничными условиями. Введение периодических граничных условий означает, что существует целое N, такое, что точки решетки $s = (s_1 s_2, ..., s_k)$ удовлетворяют условию

$$(s_1+N, s_2+N, ..., s_k+N) = (s_1, s_2, ..., s_k).$$

Для случая двумерной квадратной сетки, когда возбуждение переносится с равной вероятностью на ближайшие соседние точки, Монтролл нашел аналитическое выражение для среднего числа «скачков» возбуждения по сетке до захвата ловушкой [1], которое при больших М имеет вид

 $\langle n \rangle = \pi^{-1} M \ln M + 0.195056 M.$

В более поздних работах Сандерса, Руижгрока и Тен Боша проведены расчеты, явным образом учитывающие граничные условия. В качестве модели [2] была выбрана квадратная сетка с ловушкой в геометрическом центре. Авторы показали также, что при введении периодических

траничных условий и при $M \rightarrow \infty$ результаты их расчетов хорошо согласуются с данными Монтролла.

Известно, что тилакоиды хлоропластов имеют форму сплющенных сфероидов [3,4]. На примере пигмент-белковых комплексов зеленой фотосинтезирующей бактерии

Рис. 1. Схематическое сечение мембраны хлоропласта, показывающее предполагаемую структуру пигмент-белкового комплекса [4]

Рис. 2. Зависимость среднего пробега возбуждения по цилиндрической сетке <*n*>_{цил} от вероятности распада возбуждения α

Chlorobium limicola показано, что все семь «бактерио-хлорофилл-кольцевых систем» [3] заключены в полый цилиндр, образованный нитями полипептидов. В модели пигмент-белкового комплекса, предложенной Андерсоном [4], тоже рассматривается некая сферическая белковая структура, в которую заключены молекулы хлорофилла (рис. 1). Отсюда видно, что особый интерес представляют сетки, «натянутые» на цилиндр и сферу. Настоящая работа посвящена расчету случайных блужданий возбуждения по таким сеткам.

1. Описание модели и метода расчетов. В основу всех вычислений положена модель, предложенная Сандерсом, Руижгроком и Тен Бошем [2]. Квадратная сетка имеет *M* точек, из них *M*—1 — это моле-

(1)

кулы пигмента, а одна — ловушка, она расположена в геометрическом центре решетки. Захват возбуждения ловушкой происходит со стопроцентной эффективностью. В такой решетке есть точки трех типов:

— точки в углах решетки, имеющие два ближайших соседа,

- боковые точки, имеющие три соседа,

- внутренние точки, окруженные четырьмя соседями.

Предполагается также, что возбуждение, попав в некоторую точку с координатами (x, y), может «перескочить» только на одну из ближайших соседних точек (x', y'). Причем возможны два случая:

1) время жизни возбуждения в точке (x, y) зависит от числа соседей этой точки C(x, y);

2) время жизни на узле (т) фиксировано. В дальнейшем мы будем рассматривать именно этот случай.

Для описанной выше модели авторы [2] предложили систему уравнений для расчета числа скачков D(x, y) возбуждения, стартующего из точки (x, y) до захвата повушкой:

$$\begin{bmatrix} D(x, y) = 1 + \frac{1}{C(x, y)} \sum_{x', y'}^{(x, y)} D(x', y'), (x, y) \neq (a, a), \\ D(a, a) = 0. \end{bmatrix}$$
(2)

Ловушка имеет координаты (a, a).

Рассмотрим теперь цилиндр конечной высоты и натянутую на него равномерную сетку. Ее можно получить, соединив противоположные концы квадратной сетки по одной из координат, например по *у*. Это означает введение периодических граничных условий в систему уравнений (2):

$$D(x, y+N) = D(x, y).$$
 (3)

(4)

Здесь N — число узлов решетки по каждой из координат, так что полное число точек решетки $M = N \times N$. Для симметричной решетки N нечетно, координаты ловушки ((N+1)/2; (N+1)/2).

Система (2) решалась нами на ЭВМ БЭСМ-6 с помощью итерационного метода решения систем линейных уравнений, полученного объединением метода Либмана и метода релаксации по строкам [5]. Итерационный процесс продолжается до тех пор, пока не будет выполнено неравенство

$$\delta^{(k)} = \max |D^{(k)}(x, y) - D^{(k-1)}(x, y)| < \varepsilon,$$

где $D^{(k)}(x, y) - k$ -е приближение к решению системы (2), а ε — положительное число. Мы полагали $\varepsilon = 0.001$.

2. Результаты и обсуждение. Нами проведено численное решение системы (2) с учетом периодических граничных условий (3) для цилиндрических сеток различного размера. Для примера в табл. 1 представлены результаты расчетов числа скачков возбуждения $D_{\pi\pi\pi}(x, y)$ по цилиндрической сетке от точки (x, y) до ловушки при N=19. Для сравнения в табл. 2 даны результаты Сандерса и др. [2] для квадратной сетки того же размера — $D_{\rm KB}(x, y)$. В табл. 3 приведены значения среднего числа скачков возбуждения по решетке $\langle n \rangle$ в зависимости от размера решетки,

$$\langle n \rangle = \frac{1}{N^2} \sum_{x y} D(x, y).$$

40

Таблица Г

 $D_{\text{цвл}}(x, y)$. N = 19

19 18 17 16 15 14 13 12 11 10	y 765 759 746 725 696 655 596 507 350 0	766 760 747 728 700 661 609 539 445 350	769 764 752 735 710 678 637 589 538 507	774 769 759 744 724 698 669 637 609 595	780 776 768 755 739 719 698 677 660 654	786 783 776 766 753 738 723 709 698 698	792 789 783 775 765 754 742 733 726 723	797 794 789 783 775 766 757 750 745 743	799 797 793 788 781 774 766 761 757 755	801 799 795 790 783 777 771 765 762 761
	10	. 11	12	13	14	15	16	17	18	19
		 I				· · ·		• •. 	Таблн	ца 2
			, , , ,	D_{KB}	(x, y).	N = 19	· · ·		· · ·	ی مراجع
19 18 17 16 15 14 13 12 11 10	y 740 735 723 704 676 636 580 493 341 0	741 736 725 706 680 643 592 524 343	745 740 730 713 690 659 619 573	749 745 736 722 703 679 650	755 752 745 733 718 699	761 759 753 743 732	767 765 760 753	771 769 766	77 4 773	775
•	10	. 11	12	13	14	15	16	17	18	19

В работе [2] значения $\langle n \rangle_{\rm кв}$ для квадратной сетки при фиксированном времени жизни на узле не приведены. Они были определены нами на основании представленных в работе [2] значений D(x, y) по формуле (4). Значения $\langle n \rangle_{\rm тор}$ для тора находились нами по формуле Монтролла (1), а $\langle n \rangle_{\rm цал}$ — из системы (2) настоящей работы.

Далее, как и в работе [2], была введена вероятность с распада возбуждения на узле. Если время жизни возбуждения на узле т, а время спонтанного распада то, то

N $\langle n \rangle_{\rm KB} [2] | \langle n \rangle_{\rm Top} [1]$ $\langle n \rangle_{\text{цел}}$ 3 5 8 6 5 7 24 30 27 59 70 65 ġ 113 129121 11 187 208198 13 283 309 296 15 400 432416 17 541 578 558 705 726 19 747

Таблица З

время спонтанного распада τ_0 , то $\alpha = 1 - \exp(-\tau/\tau_0)$. При условии $\tau \ll \tau_0$ получаем $\alpha \simeq \tau/\tau_0$. Оценки для τ были взяты из работ [6] и [7]. Расчеты проводились для значений $\alpha \simeq [0,001; 0,01]$. С учетом вероятности распада возбуждения система уравнений (2) примет вид.

$$\begin{cases} D_{\alpha}(x, y) = (1 - \alpha) \left(1 + \frac{1}{C(x, y)} \sum_{x', y'}^{(x, y)} D_{\alpha}(x', y') \right), \ (x, y) \neq (a, a), \\ D_{\alpha}(a, a) = 0. \end{cases}$$

Зависимость среднего числа скачков возбуждения по цилиндрической сетке $\langle n \rangle_{\eta u \pi}$ от вероятности распада возбуждения а представлена на рис. 2.

· ·						1 a o	лица 4
	1		$D_{c\phi}(x, y)$	N = 13, M =	= 364	· · ·	
ÿ							
28	899	899	899	899	898	898	897
27	897	897	897	897	896	896	895
26	891	891	891	891	891	890	890
25	881	881	881	881	881	881	880
24	867	867	867	868	868	868	868
23	848	848	849	850	851	852	852
22	825	826	827	829	831	832	832
21	797	798	800	804	807	809	810
20	763.	765	769	775	+ 780	784	786
9	722	725	732	742	750	757	760
iš I	671	676	690	705	719	729	734
ĺ7∵	604	616	641	667	688	703	710
6	510	540	.586	628	660	680	690
15	350	444	532	596	639	665	676
14	0	348	500	582	631	659	671
· · · · ·	7	8	9	10	11	12	13

Аналогичные расчеты проводились нами для цилиндров различной формы, т. е. с разным числом точек по высоте и периметру основания. Так, например, цилиндр, у которого по высоте N точек, а по периметру основания 2N+2 точки, можно считать подобным сфере с «выколотыми» полюсами, если принять, что вероятность перескока к ближайшим соседям на сфере не зависит от расстояния. Такая аналогия имеет

	Табл	ица 5			Таблица б					
м́.	$\langle n \rangle_{c \Phi}$	$\langle n \rangle_{\text{top}}$	•	м	$\frac{\langle n \rangle_{\rm UE} \pi^{-} \langle n \rangle_{\rm KB}}{\langle n \rangle_{\rm KB}}$	$\frac{\langle n \rangle_{\rm Top} - \langle n \rangle_{\rm ILH, n}}{\langle n \rangle_{\rm ILH, n}}$	$\frac{\langle n \rangle_{\rm c} \phi^{-} \langle n \rangle_{\rm KB}}{\langle n \rangle_{\rm KB}}$			
24 60 112 180 264 364	29 91 193 339 531 772	29 90 190 333 520 754	•	9 25(24) 49 81 121 225 361(364)	20 13 10 7 6 4 3	33 11 8 7 5 4 3	21			

смысл в том случае, когда рассматриваются параллели, близкие к экватору. Результаты вычисления числа скачков возбуждения от точки (x, y) до ловушки по такой «сферической» сетке $D_{c\phi}(x, y)$ представлены в табл. 4 на примере сетки с 364 узлами. Зависимость среднего пробега возбуждения $\langle n \rangle_{c\phi}$ от размера решетки показана в табл. 5. Для сравнения в этой же таблице приведены значения среднего пробега для тора с тем же количеством узлов $\langle n \rangle_{rop}$, рассчитанные нами по формуле Монтролла. В табл. 6 показано относительное изменение среднего пробега возбуждения в зависимости от формы сетки, выраженного в процентах. Видно, что геометрия модели светособирающей матрицы наиболее сильно влияет на средний пробег возбуждения при не очень больших размерах сетки (M < 100).

Средний пробег возбуждения по «сферической» сетке изменяется при учете вероятности распада а подобно тому, как это показано на

рис. 2. В результатах, полученных для цилиндрических сеток разного размера, обращает на себя внимание увеличение числа скачков возбуждения от точек, находящихся на середине самых удаленных от ловушки «меридианов» (см. табл. 4). По-видимому, этот эффект связан с прямоугольной формой сетки. Для цилиндрической сетки размером N² он не наблюдается (см. табл. 1). Действительно, расчеты пока-

		1	Габлин	ца 7		1 - 1		Табл	ица 8			
	D _{цил}	(x, y). A	$4 = 7 \times 7$		$D_{\text{ILMJ}}(x, y). M = 7 \times 16$							
7 6 5 4	69 62 45 0	71 66 56 44	73 70 65 62	74 72 69 68	16 15 14 13	233 231 226 216	233 231 226 216	233 231 226 216	232 230 225 216			
	4	5	6	7	12 11 10 9 8	181 153 104 0	184 160 131 102	188 170 152 141	204 190 175 162 156			
	1					4	, 5	6.	7 ~			

зывают, что с увеличением числа точек по периметру основания при неизменной высоте цилиндра этот эффект проявляется более отчетливо. В качестве примера приведены результаты для цилиндра, у которого по высоте 7 точек, а периметр основания меняется (табл. 7, 8).

Можно предложить следующее объяснение. Развернем мысленно нашу сетку на плоскость и сравним точки A и C, находящиеся соответственно на краю и в середине самого удаленного от ловушки «меридиана». У точки A три ближайших соседа, поэтому возбуждение, стартующее из точки A, движется к ловушке первое время более на правленно, т. е. несколько быстрее, чем из точки C, имеющей 4 соседа. Однако путь из точки A к ловушке в среднем длиннее, чем из точки C: $OA = \sqrt{(L/2)^2 + ((N-1)/2)^2}$, OC = L/2. Здесь N — число точек по

Рис. 3. Зависимость Δ от размера решетки N: $\Delta = OA - OC$; L = N - 1 (1), N + 3 (2) и 2N + 2 (3)

Рис. 4. Зависимость Δ от протяженности решетки L при неизменной высоте N: OC = L/2 (1), $OA = V \overline{(L/2)^2 + [(N-1)/2]^2}$ (2) н Δ (3)

высоте цилиндра (N — нечетное), а L — число точек по периметру основания (L — четное). Обозначим разницу путей OA и OC через Δ , $\Delta = OA - OC$. Если пути OA и OC отличаются мало ($\Delta \ll 1$), становится заметной разница в окружении точек A и C; поэтому число скачков возбуждения от точки A до ловушки будет меньше, чем от точки C, т. е. D(A) < D(C). Когда же $\Delta \ge 1$, то краевыми эффектами можно пре-

небречь, и тогда D(A) > D(C). Зависимость Δ от размеров решетки показана на рис. 3, 4. Из рис. 3 видно, что при увеличении размероврешетки (N) Δ возрастает, максимальное значение D(x, y) при этом должно постепенно смещаться к граничным точкам «меридиана». Изрис. 4 следует, что чем больше протяженность решетки (L) при заданной ее высоте N, тем отчетливее проявляется влияние граничных условий и максимальное значение D(x, y) перемещается к средним точкам «меридиана». Эти выводы подтверждаются расчетами на ЭВМ. для решеток соответствующих размеров (табл. 7, 8 и 9, 10).

Таблица 9						Таблица 1					
	D _{цил} (х, і	y). M =	5×8		$D_{\text{цил}}$ (x, y). $M = 9 \times 12$						
9 8 7 6 5 4	60 58 51 36 0	61 59 53 44 34 4	61 59 55 49 45	<i>x</i>	12 11 10 9 8 7 6	y 194 192 184 170 146 101 0	195 192 185 173 154 128 101	196 194 188 178 166 152 142	197 195 190 183 174 166 162	197 195 191 185 178 173 170	
• .	, - ,					б	6	7	8	. 9.	

3. Заключение. Из полученных результатов можно сделать следующие выводы. Влияние формы сетки на средний пробег возбуждения до ловушки наиболее отчетливо проявляется при не очень больших размерах сетки. Принимая во внимание недавние исследования, в которых показано, что в пигмент-белковых комплексах фотосистем I и II число светосборщиков не превышает 50 [8, 9], можно сказать, что геометрия модели пигмент-белкового комплекса будет влиять на время блуждания возбуждения до захвата ловушкой.

СПИСОК ЛИТЕРАТУРЫ

[1] Montroll E. W. J. Math. Phys. 1969, 10, р. 735. [2] Sanders J. W., Ruijgrok T. W., Ten Bosch J. J. J. Math. Phys., 1971, 12, р. 534. [3] Уайт А., Хендлер Ф., Смит Э., Хилл Р., Леман И. Основы биохимии. Т. 2. М.: Мир. 1981. [4] Anderson J. M. BBA, 1975, 416, р. 191. [5] Мак-Кракен Д., Дорн У. Численные методы и программирование на ФОРТРАНе. М.: Мир, 1977. [6] Борисов А. Ю., Годик В. И. В кн.: Биофизика фотосинтеза. М.: Изд-во-МГУ, 1975, с. 170. [7] Фетисова З. Г. Канд. дис. М., МГУ, 1975. [8] Аттезг J. Progr. Bot., 1979, 41, р. 55. [9] Thornber J. Ph. Ann. Rev. Plant. Physiol., 1975, 26, p. 127.

Поступила в редакцию 03.01.83-

ВЕСТН. МОСК. УН-ТА: СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 6

УДК 538.245

44

ИССЛЕДОВАНИЕ ПЛЕНОК С ЦИЛИНДРИЧЕСКОЙ МАГНИТНОЙ Доменной структурой с помощью торсионного магнитометра

Л. М. Коренкова, Т. Н. Летова, И. М. Сараева

(кафедра общей физики для физического факультета)

, Торсионный метод является простым и надежным методом измерения магнитостатических параметров различных материалов. В частности, с помощью торсионного магнитометра можно измерить основные параметры пленок с ЦМД-структурой: константу наведенной маг-