небречь, и тогда D(A) > D(C). Зависимость Δ от размеров решетки показана на рис. 3, 4. Из рис. 3 видно, что при увеличении размероврешетки (N) Δ возрастает, максимальное значение D(x, y) при этом должно постепенно смещаться к граничным точкам «меридиана». Изрис. 4 следует, что чем больше протяженность решетки (L) при заданной ее высоте N, тем отчетливее проявляется влияние граничных условий и максимальное значение D(x, y) перемещается к средним точкам «меридиана». Эти выводы подтверждаются расчетами на ЭВМ. для решеток соответствующих размеров (табл. 7, 8 и 9, 10).

		9.	-	Ta			Таблиц	блица 10		
	D _{цил} (х, і	y). M =	5×8		D_{ijkm} (x, y). $M = 9 \times 12$					
9 8 7 6 5 4	60 58 51 36 0	61 59 53 44 34 4	61 59 55 49 45	<i>x</i>	12 11 10 9 8 7 6	y 194 192 184 170 146 101 0	195 192 185 173 154 128 101	196 194 188 178 166 152 142	197 195 190 183 174 166 162	197 195 191 185 178 173 170
• .	, - ,					б	6	7	8	. 9.

3. Заключение. Из полученных результатов можно сделать следующие выводы. Влияние формы сетки на средний пробег возбуждения до ловушки наиболее отчетливо проявляется при не очень больших размерах сетки. Принимая во внимание недавние исследования, в которых показано, что в пигмент-белковых комплексах фотосистем I и II число светосборщиков не превышает 50 [8, 9], можно сказать, что геометрия модели пигмент-белкового комплекса будет влиять на время блуждания возбуждения до захвата ловушкой.

СПИСОК ЛИТЕРАТУРЫ

[1] Montroll E. W. J. Math. Phys. 1969, 10, р. 735. [2] Sanders J. W., Ruijgrok T. W., Ten Bosch J. J. J. Math. Phys., 1971, 12, р. 534. [3] Уайт А., Хендлер Ф., Смит Э., Хилл Р., Леман И. Основы биохимии. Т. 2. М.: Мир. 1981. [4] Anderson J. M. BBA, 1975, 416, р. 191. [5] Мак-Кракен Д., Дорн У. Численные методы и программирование на ФОРТРАНе. М.: Мир, 1977. [6] Борисов А. Ю., Годик В. И. В кн.: Биофизика фотосинтеза. М.: Изд-во-МГУ, 1975, с. 170. [7] Фетисова З. Г. Канд. дис. М., МГУ, 1975. [8] Аттезг J. Progr. Bot., 1979, 41, р. 55. [9] Thornber J. Ph. Ann. Rev. Plant. Physiol., 1975, 26, p. 127.

Поступила в редакцию 03.01.83-

ВЕСТН. МОСК. УН-ТА: СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 6

УДК 538.245

44

ИССЛЕДОВАНИЕ ПЛЕНОК С ЦИЛИНДРИЧЕСКОЙ МАГНИТНОЙ Доменной структурой с помощью торсионного магнитометра

Л. М. Коренкова, Т. Н. Летова, И. М. Сараева

(кафедра общей физики для физического факультета)

, Торсионный метод является простым и надежным методом измерения магнитостатических параметров различных материалов. В частности, с помощью торсионного магнитометра можно измерить основные параметры пленок с ЦМД-структурой: константу наведенной магнитной анизотропни K_{μ} , константу кристаллографической анизотропии K_1 [1]. В нашей работе показано, что торсионный метод позволяет измерить намагниченность насыщения M_s и поле исчезновения доменной структуры, а также исследовать процессы намагничивания этих пленок.

Мы изучали эпитаксиальные пленки ферритов-гранатов состава (YSmCa)₃(FeGe)₅O₁₂, осажденные на поверхность (111) Gd—Ga-граната. Определение кристаллографических осей в пленке производилось обычным рентгеновским методом. Доменная структура пленок наблюдалась с помощью эффекта Фарадея в поляризационном микроскопе.

Измерения на торсионном магнитометре проводились во внешнем магнитном поле *H* с напряженностью до 12 кЭ. Чувствительность из-

для пленки феррита-граната состава Y_{2,8}Sm_{0,1}Ca_{0,1}Fe_{4,9}Ge_{0,1}O₁₂, осажденной на поверхность (111) Gd—Gа-граната. Образец — диск объема V= =1,2·10⁻⁴ см³ (толщина 6 мкм, диаметр 5 мм), с параметрами K_u= =4700 эрг/см³, K₁=1000 эрг/см³, M₄=9 Гс. Горизонталь в плоскости образца — кристаллографическое направление [110]. Пунктирной линией нанесена кривая, рассчитанная по формуле (1)

Рис. 2. Зависимость (L/H)² от L для того же образца

менялась по мере надобности от 1.10⁻² эрг/град до 1.10⁻³ эрг/град. Для исследования процессов намагничивания пленка подвешивалась вертикально между полюсами электромагнита. Горизонтальным направлением в плоскости пленки было направление [110], которое устанавливалось под углом а к направлению поля (в наших измерениях

 $a=45^{\circ}$). Измерялся вращательный момент L при изменении величины поля H и строились кривые зависимости L/H от H (рис. 1), а также $(L/H)^2$ от L (рис. 2).

Три кривые на рис. І получены для одной и той же пленки с различной доменной структурой в исходном состоянии. Пленка имела следующие параметры: намагниченность насыщения $M_s=9$ Гс, константы $K_1=1000$ эрг/см³, $K_u=4700$ эрг/см³.

Кривая 1 соответствует лабиринтной доменной структуре в исходном состоянии. Начальный участок этой кривой экстраполируется к началу координат, что говорит об отсутствии остаточной намагниченности. Максимум кривой соответствует исчезновению доменной структуры в больщей части пленки. Кривые 2 и 3 рис. 1 получены для пленки с ЦМД-структурой в ясходном состоянии. В процессе намагничивания, характеризуемом кривой 3, происходит коллапсирование ЦМД-структуры, а кривой 2 — ее расширение. Компонента поля $H_{\perp} = H \sin \alpha$, соответствующая максимуму кривой 3, для всех исследованных нами пленок совпадала по величине с полем коллапса H_0 , измеренным магнитооптическим методом.

Из рис. 1 видно, что пленки с ЦМД-структурой в исходном состоянии имеют заметную остаточную намагниченность. При этом остаточная намагниченность совпадает по направлению с намагниченностью ЦМД.

Максимумы кривых 2 и 3 отличаются по высоте. Это различие можно объяснить следующим образом. При коллапсировании векторы намагниченности начинают поворачиваться в направлении поля еще до исчезновения ЦМД. При расширении ЦМД вектор намагниченности к моменту исчезновения доменной структуры направлен вдоль оси легкого намагничивания до исчезновения доменной структуры.

Различие хода кривых 1—3 от максимума до слияния, по всей вероятности, объясняется наличием в пленке неперемагниченных участков, т. е. неоднодоменным состоянием пленки. В полях, соответствующих однодоменному состоянию, кривые 1—3 сливаются.

Для анализа вида кривой L/H = f(H) воспользуемся выражением для плотности свободной энергии E в плоскости (112) идеально одноосной пленки, намагниченной до насыщения:

$$E = -M_{e}H \cos \theta + 2\pi M_{e}^{2} \sin^{2}(\theta + \alpha) + K_{\mu} \cos^{2}(\theta + \alpha) +$$

$$+ K_1 \left[\frac{1}{3} \sin^4 \left(\theta + \alpha \right) + \frac{1}{4} \cos^4 \left(\theta + \alpha \right) \right], \tag{1}$$

где θ — угол между направлениями M_s и H.

При $\alpha = 45^{\circ}$ равновесное положение M_s определяется условием

$$\frac{\partial E}{\partial \theta} = M_s H \sin \theta + \left(2\pi M_s^2 - K_u + \frac{K_1}{12}\right) \cos 2\theta + \frac{7}{24} K_1 \sin 4\theta = 0.$$

Из этого условия находится выражение для равновесного угла θ и затем определяется величина вращательного момента L, равного моменту упругих сил закрученной нити. Если пренебречь членами, содержащими K_1 , то

$$L = M_{s}H \sin \theta = M_{s}H - \frac{-M_{s}H \pm [M_{s}^{2}H^{2} + 8(2\pi M_{s}^{2} - K_{u})^{2}]^{1/2}}{4(2\pi M_{s}^{2} - K_{u})}$$

отсюда

$$\frac{L}{H} = M_s \frac{-M_s H \pm [M_s^2 H^2 + 8(2\pi M_s^2 - K_u)^2]^{1/2}}{4(2\pi M_s^2 - K_u)}.$$
 (2)

На рис. 1 пунктирной линией нанесена зависимость L/H = f(H), рассчитанная по формуле (2) при следующих параметрах пленки: $M_s = 9 \Gamma c$, $K_u = 4700 \ \text{эрг/см}^3$, $K_1 = 1000 \ \text{эрг/см}^3$. Как и следовало ожидать, теоретическая кривая совпадает с экспериментальными в области полей, соответствующих однодоменному состоянию.

В основу измерений M_s был положен метод, описанный в работе [2]. При этом мы поступали следующим образом. Определяли M_s из экстраполяции $H \rightarrow 0$ того участка зависимости (L/H) = f(H), где кривые 1, 2 и 3 сливаются. Затем, уточняли это значение M_s с помощью расчета зависимости L/H = f(H) по формуле (2). При уточнении значения M_s мы полагали, что экспериментальные и теоретические кривые должны совпадать в области полей, соответствующих однодоменному состоянию пленки. Для тех же образцов мы определяли M_s методом, предложенным в работе [3]. Авторы этой работы рекомендуют экстраполировать к $L \rightarrow 0$ линейный участок зависимости $(L/H)^2 = f(L)$. Однако практически для всех исследованных нами пленок зависимость $(L/H)^2 = f(L)$ представляла собой два линейных участка (см. рис. 2). Из сопоставления кривых рис. 1 и 2 легко установить, что однодоменному состоянию, для которого справедлив метод, соответствует линейный участок bc.

Проведенный нами анализ экспериментальных кривых L/H = f(H)и $(L/H)^2 = f(L)$ позволяет определить M_s пленок с ЦМД-структурой на торсионном магнитометре. Это особенно важно для тех случаев, когда для определения M_s нельзя воспользоваться магнитооптическим методом, например при очень малых (менее 1 мкм) размерах ЦМД или для пленок с жесткими доменами, когда теория Тиля [4] неприменима. Точность измерения M_s на торсионном магнитометре не хуже 10%.

- 1 C						
x	0,96	1,05	1,25	1,50	1,55	1,60
y	0,10	0,12	0,10	0,09	0,09	0,08
к , мкм	6,5	10,0	20,0	12,3	7,3	10,5
<i>М</i> _s , Гс	16 (17)	4	11 (12)	7 (20)	6 (30)	1,5 (25)
$K_{\mu}, \frac{\operatorname{spr}}{\operatorname{cm}^3}$	5100	7700	6800	2100	1100	500
Н,,Э	120	_	112	300	300	280
d, мкм	9,3	_	23	7,8	5,7	6,2
q	3	90	8	7	6	20

Параметры пленок ферритов-гранатов состава Y_{5-x-y}Sm_yCa_xFe_{5-x}Ge_xO₁₂

Здесь h — толщина пленки, d — период доменной структуры, $q = \frac{\kappa_u}{2\pi M_s^2}$ — фактор качества. Остальные обозначения объясняются в тексте.

В таблице приведены измеренные нами на торсионном магнитометре параметры пленок ферритов-гранатов различного состава. Пленки с большим содержанием германия (x>1) имели жесткие ЦМД (большие поля коллапса), поэтому значения M_s для этих пленок, измеренных магнитооптическим методом, оказываются завышенными. Эти значения указаны в таблице в скобках.

СПИСОК ЛИТЕРАТУРЫ

[1] Uchishiba H., Obokata T., Asama K. Jap. J. Appl. Phys. 1977, 16, N 12, p. 2291. [2] Neugebauer C. A. Phys. Rev., 1959, 16, N 6, p. 1441. [3] Miya-Jima H., Sato K. J. Appl. Phys., 1976, 47, N 10, p. 4669. [4] Thiele A. A. Bell. Syst. Tech., 1969, 48, p. 3287.

Поступила в редакцию 10.01.83

(1)

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 6

УДК 538.245

МАГНИТНОЕ ПРЕВРАЩЕНИЕ ПОРЯДОК-БЕСПОРЯДОК В СИЛЬНО РАЗБАВЛЕННЫХ ФЕРРИТАХ-ШПИНЕЛЯХ

К. П. Белов, А. Н. Горяга, А. И. Кокорев

(кафедра общей физики для естественных факультетов)

В настоящее время известно сравнительно мало экспериментальных работ по изучению намагниченности в районе температуры Кюри Ө сильно разбавленных ферритов со структурой шпинели. Однако эти сведения необходимы для более глубокого понимания природы обменных взаимодействий. Особый интерес представляет исследование разбавленных ферритов, в которых наряду с упорядоченными спинами имеются и неупорядоченные. Такие соединения, которые, будучи однородными по объему образца, имеют две магнитные фазы, называются миктомагнетиками.

В качестве объектов исследования были выбраны, сильно разбавленные ферриты следующих составов;

Li_{0.2}Zn_{0.6}Fe_{2.2}O₄(Li—Zn) и Mg_{1.5}FeTi_{0.5}O₄(Mg—Ti),

в которых, согласно результатам мёссбауэровских исследований [1—2], наряду с упорядоченными спинами имеются и неупорядоченные. Для сравнения нами был изучен также феррит состава Ni_{0,2}Zn_{0,8}Fe₂O₄ (Ni—Zn), в котором, несмотря на большое количество в нем диамагнитного цинка, все магнитные ионы Ni²⁺ и Fe³⁺ являются обменно связанными [3].

Образцы разбавленных ферритов указанных выше составов были изготовлены нами по керамической технологии. Рентгенофазовый анализ показал однофазность образцов. Намагниченность измерялась баллистическим методом в полях до 10,5 кЭ, создаваемых электромагнитом.

В разбавленных ферримагнитных соединениях область магнитного превращения сильно размыта, и, следовательно, трудно с достаточной точностью определить температуру Кюри. Поэтому в данной работе для анализа характера магнитного превращения в разбавленных ферритах был применен метод «термодинамических коэффициентов», разработанный ранее [4]. В этой работе было установлено, что намагниченность ферромагнетиков о вблизи температуры Кюри подчиняется уравнению

$$\alpha\sigma + \beta\sigma^3 = H,$$

где $\sigma = \sigma_i + \sigma_s$ при $T < \Theta$, $\sigma = \sigma_i$ при $T \gg \Theta$, σ_i — истинная намагниченность, σ_s — самопроизвольная намагниченность, α и β — термодинамические коэффициенты. В области $T < \Theta$ при H = 0 $\sigma_i = 0$ и $\sigma_s^2 = -\alpha/\beta$. Уравнение (1) вытекает из общей термодинамической теории

48