СПИСОК ЛИТЕРАТУРЫ

[1] Uchishiba H., Obokata T., Asama K. Jap. J. Appl. Phys. 1977, 16, N 12, p. 2291. [2] Neugebauer C. A. Phys. Rev., 1959, 16, N 6, p. 1441. [3] Miyalima H., Sato K. J. Appl. Phys., 1976, 47, N 10, p. 4669. [4] Thiele A. A. Bell. Syst. Tech., 1969, 48, p. 3287.

Поступила в редакцию 10.01.83

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 6

УДК 538.245

МАГНИТНОЕ ПРЕВРАЩЕНИЕ ПОРЯДОК-БЕСПОРЯДОК В СИЛЬНО РАЗБАВЛЕННЫХ ФЕРРИТАХ-ШПИНЕЛЯХ

К. П. Белов, А. Н. Горяга, А. И. Кокорев

(кафедра общей физики для естественных факультетов)

В настоящее время известно сравнительно мало экспериментальных работ по изучению намагниченности в районе температуры Кюри О сильно разбавленных ферритов со структурой шпинели. Однако эти сведения необходимы для более глубокого понимания природы обменных взаимодействий. Особый интерес представляет исследование разбавленных ферритов, в которых наряду с упорядоченными спинами имеются и неупорядоченные. Такие соединения, которые, будучи однородными по объему образца, имеют две магнитные фазы, называются миктомагнетиками.

В качестве объектов исследования были выбраны, сильно разбавленные ферриты следующих составов:

$$Li_{0,2}Zn_{0,6}Fe_{2,2}O_4(Li-Zn)$$
 и $Mg_{1,5}FeTi_{0,5}O_4(Mg-Ti)$,

в которых, согласно результатам мёссбауэровских исследований [1—2], наряду с упорядоченными спинами имеются и неупорядоченные. Для сравнения нами был изучен также феррит состава Ni_{0,2}Zn_{0,8}Fe₂O₄ (Ni—Zn), в котором, несмотря на большое количество в нем диамагнитного цинка, все магнитные ионы Ni²⁺ и Fe³⁺ являются обменно связанными [3].

Образцы разбавленных ферритов указанных выше составов были изготовлены нами по керамической технологии. Рентгенофазовый анализ показал однофазность образцов. Намагниченность измерялась баллистическим методом в полях до 10,5 кЭ, создаваемых электромагнитом.

В разбавленных ферримагнитных соединениях область магнитного превращения сильно размыта, и, следовательно, трудно с достаточной точностью определить температуру Кюри. Поэтому в данной работе для анализа характера магнитного превращения в разбавленных ферритах был применен метод «термодинамических коэффициентов», разработанный ранее [4]. В этой работе было установлено, что намагниченность ферромагнетиков о вблизи температуры Кюри подчиняется уравнению

$$\alpha \sigma + \beta \sigma^3 = H,\tag{1}$$

где $\sigma = \sigma_i + \sigma_s$ при $T < \Theta$, $\sigma = \sigma_i$ при $T > \Theta$, σ_i — истинная намагниченность, σ_s — самопроизвольная намагниченность, σ_s и σ_s — термодинамические коэффициенты. В области σ_s при σ_s при σ_s при σ_s — σ_s уравнение (1) вытекает из общей термодинамической теории

Ландау [5]. Коэффициент β в окрестности температуры Кюри имеет только положительный знак, а знак коэффициента α зависит от температуры:

$$\alpha = \alpha'_{\Theta}(T - \Theta),$$

где

$$\alpha'_{\Theta} = \left(\frac{d\alpha}{dT}\right)_{T=\Theta}.$$

При температуре Кюри коэффициент α равен нулю, а в окрестности температуры Кюри $\alpha>0$, если $T>\Theta$, и $\alpha<0$, если $T<\Theta$. Для того чтобы по методу «термодинамических коэффициентов» определить значе-

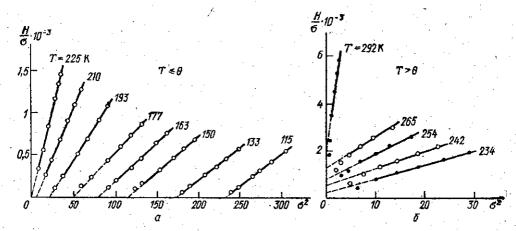


Рис. 1. Зависимость H/σ от σ^2 для феррита $\mathrm{Mg_{1.5}FeTi_{0.5}O_4}$ в интервале температур 115—225 K (a) и 234—292 K (б)

ния температуры Кюри и самопроизвольной намагниченности, были построены зависимости $\frac{H}{\sigma}$ (σ^2). Значения коэффициентов α как выше, так и ниже Θ определялись величнюй отрезка, отсекаемого прямыми $\frac{H}{\sigma}$ (σ^2) на оси ординат. Температура Кюри находилась путем экстраполяции кривой $\alpha(T)$ к $\alpha=0$. Величина σ_s^2 определялась отрезком, отсекаемым прямой $\frac{H}{\sigma}$ (σ^2) на оси абсцисс.

На рис. 1 в качестве примера представлена зависимость $\frac{H}{\sigma}$ (σ^2) для образца Mg—Ti. Из рисунка видно, что в области больших полей зависимость H/σ от σ^2 носит линейный характер. Что касается области слабых полей, то при $T<\Theta$ точки отходят влево от прямых $\frac{H}{\sigma}$ (σ^2), а при $T>\Theta$ — вправо. Следовательно, имеет место такая же картина, как и для чистых ферромагнетиков (Ni, Fe). Таким же способом была проведена обработка экспериментальных результатов по намагниченности для ферритов Ni—Zn и Li—Zn.

Согласно теории Нееля [6] для ферритов, так же как и для ферромагнетиков, самопроизвольная намагниченность σ_s при подходе

к температуре Кюри должна подчиняться закону

$$\left(\frac{\sigma_s}{\sigma_{s_0}}\right)^2 = \xi \left(1 - \frac{T}{\Theta}\right). \tag{2}$$

Интересно было проверить, выполняется ли этот закон и для сильноразбавленных ферритов. За величину σ_{s_0} было взято значение намагниченности, полученное из изотерм намагниченности $\sigma(H)$, снятых при 4,2 К. Оказалось, что для образцов Ni—Zn и Li—Zn соотношение (2) хорошо выполняется, а у образца Mg—Ti имеет место линейная зависимость σ_{s}/σ_{s_0} от T/Θ (рис. 2).

У миктомагнитного образца Li—Zn коэффициент § (табл. 1) почти в полтора раза меньше, чем у образца Ni—Zn, у которого все ионы

Fe³⁺ и Ni²⁺ магнитоактивные.

Таблица 1

Образец	0 ; Κ	σ_{s_0}	.	α' _Θ .	β _Θ
Mg — Ti	225±1,5	24,2±1,1	Закон (2)	13,3	45,45
Ni — Zn Li — Zn	$245\pm1.5 \\ 445\pm2.0$	65,5±2,5 93,2±3,5	не выполняется 0,83 0,50	3,33 10,0	0,33 1,4

Таким образом, для образцов, в которых имеются магнитонеактивные ионы, либо соотношение (2) не выполняется, либо значение коэффициента ξ значительно меньше, чем у образца, в котором нет магнитонеактивных ионов Fe^{3+} . Согласно результатам работы [7] в миктомагнетиках и в «спиновых стеклах» максимум на кривых дифферен-

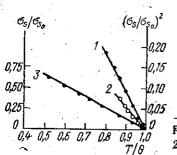


Таблица 2 $\frac{\text{Образец}}{\text{Образец}} \begin{vmatrix} B_{\text{эксп}} = \left(\frac{1}{\beta\Theta}\right)^{1/3} B_{\text{расу}} = \left(\frac{n_0 \sigma}{\Theta}\right)^{1/3} \text{F}$ $\frac{\text{Li} - Zn}{\text{Mg} - \text{Ti}} \begin{vmatrix} 0.89 & 1.12 \\ 0.27 & 0.22 \\ \text{Ni} - Zn & 1.45 & 0.86 \end{vmatrix}$

Рис. 2. Зависимости $(\sigma_s/\sigma_s)^2$ $(1-\mathrm{Ni}_{0,2}\mathrm{Zn}_{0,8}\mathrm{Fe}_2\mathrm{O}_4;$ 2 — $\mathrm{Li}_{0,2}\mathrm{Zn}_{0,6}\mathrm{Fe}_{2,2}\mathrm{O}_4)$ н (σ_s/σ_s) $(3-\mathrm{Mg}_{1,5}\mathrm{Fe}\mathrm{Ti}_{0,5}\mathrm{O}_4)$ от T/θ вблизи точки Кюри

циальной восприимчивости $\chi_{\text{диф}}(T)_{H=\text{const}}$ с увеличением магнитного поля смещается в сторону низких температур. Поэтому представляло также интерес выяснить, каково будет поведение максимума дифференциальной восприимчивости вблизи точки Кюри у разбавленных ферритов.

Непосредственные измерения величины $\chi_{\text{диф}}$ магнитных материалов с малой намагниченностью довольно трудоемки. Однако метод «термодинамических коэффициентов» позволяет сравнительно просто рассчитать величину $\chi_{\text{диф}}$. Дифференцируя уравнение (1) по H, получаем

$$\alpha \frac{\partial \sigma}{\partial H} + 3\beta \sigma^2 \frac{\partial \sigma}{\partial H} - 1 = 0, \quad \frac{\partial \sigma}{\partial H} = \chi_{\mu\nu\phi} = \frac{1}{\alpha + 36\sigma^2}.$$
 (3)

Таким образом, для каждой температуры, зная значения коэффициентов α и β , а также величину σ при определенном значении поля, можно по формуле (3) определить величину $\left(\frac{\partial \sigma}{\partial H}\right)_{H=\mathrm{const}}$ и, следовательно, найти ее температурную зависимость в районе точки Кюри.

Оказалось, что только для образца Mg—Ті происходит смещение максимума $|\chi_{\text{диф}}|_{H=\text{const}}(T)$ в сторону низких температур (рис. 3) при увеличении H, т. е. так же, как и для магнитного перехода в миктомагнетиках и «спиновых стеклах». Максимум $|\chi_{\text{диф}}|_{H=\text{const}}(T)$ у миктомагнитного образца Li—Zn смещается в сторону высоких температур. Для сравнения на рис. 4 приведены температурные зависимости

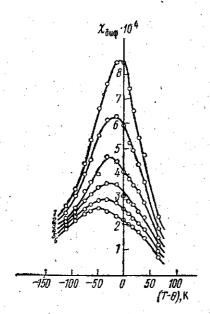


Рис. 3. Температурная зависимость восприимчивости парапроцесса феррита $Mg_{1,6}$ Fe $Ti_{0,5}O_4$: $H=1(1),\ 2\ (2),\ 4(3),\ 6(4),\ 8(5)$ и 10(6) кЭ

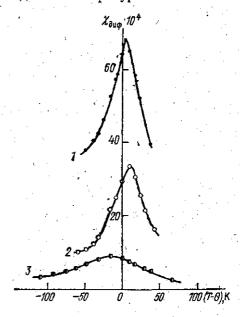


Рис. 4. Температурные зависимости $\chi_{\pi \# \Phi}$ при H=1 к \Im для $\mathrm{Ni}_{0,7}Z\mathrm{n}_{0,8}\mathrm{Fe}_2\mathrm{O}_4$ (1), $\mathrm{Li}_{0,2}Z\mathrm{n}_{0,6}\mathrm{Fe}_{2,2}\mathrm{O}_4$ (2) и $\mathrm{Mg}_{1,5}\mathrm{Fe}\mathrm{Ti}_{0,5}\mathrm{O}_4$ (3)

 $\chi_{\text{диф}}$ при $H\!=\!1\,$ к \ni для трех образцов. Видно, что образец Mg—Ti не только обладает наименьшей величиной $\chi_{\text{диф}}$, но и имеет наиболее размытую область магнитного превращения.

Как следует из соотношения (1), при $T = \Theta$ намагниченность пара-

процесса от будет зависеть от поля следующим образом:

$$\sigma_l = \left(\frac{1}{\beta_{\Theta}}\right)^{1/3} \dot{H}^{1/3} . \tag{4}$$

Следовательно, величина $(1/\beta_{\Theta})^{1/3}$ является характеристикой парапронесса при $T=\Theta$. В табл. 2 приведены значения коэффициента $(1/\beta_{\Theta})^{1/3}$ для трех образцов. Видно, что наименьший парапроцесс в точке Кюри у образца Mg—Ti.

Из теории молекулярного поля следует та же зависимость намаг-

ниченности от поля при T=0, как и из теории Ландау:

$$\sigma = F(n_0\sigma_0^3/\Theta)^{1/3}H^{1/3}$$

где

$$F = \left\{ \frac{10}{9} \frac{(S+1)\mu_{\rm B}}{S \left[1 + \frac{S^2}{(1+S)^2}\right] k} \right\}^{1/3},$$

S — спин, $\mu_{\rm B}$ — магнетон Бора, k — постоянная Больцмана, F = 0,0586 для S = 1/2.

Таким образом, по теории молекулярного поля величина парапроцесса в точке Кюри для ферромагнетиков определяется коэффициентом

$$B_{\text{pacy}} = F(n_0 \sigma_0^3/\Theta)^{1/3}.$$
 (5)

Как показывает табл. 2, для образцов с низкими точками Кюри (Mg—Ti и Ni—Zn) величина $B_{
m accu}$ больше, чем $B_{
m paccu}$, а для образца Li—Zn — наоборот. В соответствии со значениями B_{pacq} парапроцесс у образца Li-Zn должен быть больше, чем у Ni-Zn. Однако, как следует из эксперимента, у образца Ni-Zn парапроцесс приблизительно в полтора раза больше, чем у Li—Zn. Поэтому можно предположить, что при T = 0 парапроцесс в разбавленных ферритах со струк**турой** шпинели зависит не только от величин σ , n_0 и Θ , но также и от других факторов. Например, в ферритах-шпинелях, как было показано в работе [8], при низких температурах между магнитными катионами в В-узлах может возникать также прямой катион-катионный Например, согласно правилам Гуденафа, обмен. прямой $\mathrm{Fe^{3+}}(d^5)\mathrm{--Fe^{3+}}(d^5)$ будет иметь отрицательный знак и обладать значительной силой, что может вызывать переход магнитной структуры феррита в неколлинеарную. Поэтому мы предполагаем, что у ферритов с низкими точками Кюри может осуществляться переход из парамагнитного сразу в неколлинеарное ферримагнитное состояние. В этом случае при $T=\Theta$ рост истинной намагниченности σ_i с полем будет происходить не только за счет поворота магнитных моментов корреляционных областей («ближний порядок»), но также и за счет увеличения их магнитных моментов вследствие уменьшения неколлинеарности в этих областях. В этом случае следует ожидать, что у таких ферритов величина $B_{\text{эксп}}$ будет большей, чем $B_{\text{расч}}$.

На основании сказанного выше и с учетом полученных результатов можно сделать вывод, что у ферритов Mg—Ті и Ni—Zn имеет место переход из парамагнитного в неколлинеарное ферримагнитное,

а у Li-Zn-образца — в коллинеарное состояние.

В заключение следует отметить, что метод «термодинамических коэффициентов» является весьма эффективным для анализа характера магнитных превращений в разбавленных ферритах.

СПИСОК ЛИТЕРАТУРЫ

[1] Joung J. W., Smith J. J. Appl. Phys., 1971, 42, p. 2344. [2] De Grave E. et al. J. Appl. Phys., 1977, 12, p. 131. [3] Morrish A. H., Clark P. E. Phys. Rev. B. 1975, 11, p. 278. [4] Белов К. П., Горяга А. Н. Физ. мет. и металловедение, 1956, № 2, с. 4. [5] Ландау Л. Д., Лифшиц Е. М. Статистическая физика. М.: Наука, 1964, гл. XIV. [6] Née! М. L. Ann. de Phys., 1948, 3, p. 137. [7] Verbeek B. H. et al. J. de Physique Colloque C. 6, supplément au N 8, 1978, 39, p. 916. [8] Wickham D. G., Goodenough J. B. Phys. Rev., 1959, 115, p. 1156.

Поступила в редакцию 13.01.83