УДК 533.9.01

СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЯ СИСТЕМЫ УРАВНЕНИИ ВЛАСОВА В ОГРАНИЧЕННОЙ ОБЛАСТИ

П. Б. Дмитриев

(кафедра математики)

При исследовании движений достаточно разреженной плазмы в приближении самосогласованного поля применяется система уравнений Власова, которая в одномерном случае при компенсации стационарным электрическим полем неподвижного ионного фона имеет вид

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{\partial \varphi}{\partial x} \cdot \frac{\partial f}{\partial v} = 0,$$

$$-\frac{\partial^2 \varphi}{\partial x^2} = \lambda \int_{-\infty}^{+\infty} f dv,$$
(1)

$$f(x, v, 0) = f_0(x, v).$$

Здесь x, v — точки на прямой R_1 , f(x, v, t) — функция распределения электронов, $\phi(x, t)$ — потенциал самосогласованного поля, $\lambda = 4\pi em_s$ где e — заряд электрона, m — масса электрона.

В работе [1] доказано, что система (1) имеет единственное классическое решение на интервале (0, ∞). В настоящей работе система (1) исследуется для случая, когда $x \in [a, b]$, и на концах отрезка ставятся условие поглощения для функции распределения f(x, v, t) и однородные граничные условия 1-го рода для потенциала $\varphi(x, t)$:

$$f(a, v, t) \mid_{v>0} = f(b, v, t) \mid_{v<0} = 0,$$

$$\varphi(a, t) = \varphi(b, t) = 0.$$
(2)

Специфика условий (2) приводит к тому, что у задачи (1)—(2) не

существует классического решения.

Определение. Совокупность двух функций $\{\varphi(x, t), f(x, v, t)\}$ назовем обобщенным решением системы $\{1\}$ — $\{2\}$ на интервале $\{0, T\}$, если

1) функция $\phi(x, t)$ два раза дифференцируема по x и непрерывна по t и

$$\|\phi\| = \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} |\phi(x,t)| + \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \left| \frac{\partial \varphi}{\partial x} \right| + \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \left| \frac{\partial^2 \varphi}{\partial x^2} \right| < \infty;$$

2) функция f(x, v, t) интегрируема по dxdv при всех $t \in [0, T]$ и по dv при всех $x \in [a, b]$ и $t \in [0, T]$;

3) функция f(x, v, t) постоянна на характеристиках первого уравнения системы (1)—(2), функция $\phi(x, t)$ удовлетворяет тождеству

$$\varphi(x, t) = -\lambda \int_{a}^{b} G(x, \xi) \int_{-\infty}^{+\infty} f(\xi, v, t) dv d\xi,$$

где $G(x, \xi)$ — функция Грина оператора $\partial^2/\partial x^2$ с однородными граничными условиями 1-го рода.

Тею рем а. Пусть функция $f_0(x, v)$ дифференцируема по x и v, и существует L(v) — ограниченная, монотонно убывающая функция модуля скорости, такая, что

$$f_0(x, v) \leqslant L(v), \left| \frac{\partial f_0}{\partial x} \right| \leqslant L(v), \left| \frac{\partial f_0}{\partial v} \right| \leqslant L(v), \int_{-\infty}^{+\infty} L(v) \cdot |v| dv < \infty,$$

тогда на некотором интервале (0, T) существует единственное обобщенное решение системы (1)-(2).

Вообще говоря, число T зависит от начальной функции распреде-

ления f_0 .

Доказательство. Пусть T — некоторое положительное число; W_T — пространство дважды дифференцируемых по x и непрерывных по t функций $\{\varphi(x,t)\}$ с нормой

$$\|\phi\| = \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} |\phi(x,t)| + \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \left| \frac{\partial \phi}{\partial x} \right| + \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \left| \frac{\partial^2 \phi}{\partial x^2} \right| < \infty$$

и таких, что $\varphi(a, t) = \varphi(b, t) = 0$; ρ_T — метрика в пространстве W_T определяемая выражением

$$\rho_T(\varphi_1, \varphi_2) = \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} |\varphi_1(x_1t) - \varphi_2(x,t)| + \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \left| \frac{\partial \varphi_1}{\partial x} - \frac{\partial \varphi_2}{\partial x} \right|;$$

 W_T^* — пополнение пространства W_{T_*} в метрике ρ_T ; \mathring{W}_T^* — подмножество W_T^* следующего вида: если функция $\phi \in \mathring{W}_T^*$, то существует последовательность $\{\phi_n\}$ функций из пространства W_T , равномерно по n ограниченная по норме и сходящаяся в метрике ρ_T к функции ϕ .

Положим, что любая функция $\varphi(x,t)$ из пространства W_T вне отрезка [a,b] равна нулю, тогда для нее определено отображение S^{φ}_{-t} , которое точке $(x,v) \in R_2$ ставит в соответствие точку $(X_{\varphi}(x,v,t),V_{\varphi}(x,v,t))$, являющуюся значением решения системы дифференциальных уравнений

$$\frac{dX_{\varphi}}{d\tau} = -V_{\varphi}, \ X_{\varphi}(x, v, 0) = x;$$

$$\frac{dV_{\varphi}}{d\tau} = -\frac{\partial \varphi}{\partial x}(X_{\varphi}, t - \tau), \ V_{\varphi}(x, v, 0) = v$$
(3)

в точке $\tau = t$. Если функция $\phi(x, t) \in W_T$, то непрерывно дифференцируемое решение последних двух уравнений существует и единственно. Определим множество $D(\phi, t) \subset R_2$ следующим образом:

$$D(\varphi, t) = \{(a, b) \otimes R_1\} \cap \hat{S}_t \neq \{(a, b) \otimes R_1\}.$$

Множество $D(\varphi, t)$ открыто и измеримо в R_2 , так как отображение S^{φ}_{-t} является открытым и измеримые в R_2 множества переводит в измеримые.

При фиксированной функции $\varphi(x, t) \in W_T$ функция f(x, v, t) имеет

вид

$$f(x, v, t) = \left\{ egin{array}{ll} f_0\left(X_{\phi}, \, V_{\phi}
ight), & ext{если } \left(X_{\phi}, \, V_{\phi}
ight) \in D\left(\phi, \, t
ight), \ 0, & ext{если } \left(X_{\phi}, \, V_{\phi}
ight) \in D\left(\phi, \, t
ight). \end{array}
ight.$$

Поэтому пара функций $\{\varphi, f\}$ в том и только в том случае является обобщенным решением системы (1)—(2), если функция $\varphi(x, t)$ удов-

летворяет интегральному уравнению $\phi = K(\phi)$, где оператор K определяется выражением

$$K(\varphi) = -\lambda \int_{a}^{b} G(x, \xi) \int_{\overline{P(\varphi, \xi, t)}} f_{0}(X_{\varphi}(\xi, v, t), V_{\varphi}(\xi, v, t)) dv d\xi.$$

Здесь $P(\varphi, \xi, t) = \bigcup_{\substack{(\xi, t) \in D(\varphi, t) \\ \hline P(\varphi, \xi, t)}}$ — открытое, измеримое на прямой множество, и через $\overline{P(\varphi, \xi, t)}$ обозначено замыкание множества $P(\varphi, \xi, t)$ в R_1 .

Таким образом, оператор К определен на функциях из простран-

ства W_T .

Установим некоторые свойства отображения S_{-t} .

 $m{\Pi}$ ем м а 1. Пусть $m{\phi}$, $m{\phi}_1$, $m{\phi}_2$ — функции из пространства $m{W}_T$, тогда справедливы оценки:

1.
$$|X_{\varphi_1} - X_{\varphi_1}| \leqslant t^2 \rho_T (\varphi_1, \varphi_2),$$

 $|V_{\varphi_1} - V_{\varphi_2}| \leqslant t \rho_T (\varphi_1, \varphi_2);$

2. $|v-V_{\phi}| < \|\phi\|t$, $V_{\phi} \in (-C_4/t, C_4/t)$, если $X_{\phi} \in (a, b)$, где $C_4 < \infty$;

3.
$$\int_{-\infty}^{+\infty} L(V_{\varphi}) dv \leqslant \int_{-\infty}^{+\infty} L(v) dv + 2L(0) \|\varphi\| t.$$

Первые два утверждения леммы сразу следуют из интегрального представления системы (3). Доказательство третьего утверждения основано на свойствах монотонного убывания и ограниченности функции L(v) и втором утверждении леммы.

Используя первое утверждение леммы 1, можно корректно определить отображение \mathring{S}_{-t}^{Φ} для любой функции ϕ из множества \mathring{W}_{T}^{*} следующим образом: $\mathring{S}_{-t}^{\Phi}: (x,v) \to (\mathring{X}_{\phi},\mathring{V}_{\phi})$, где $(\mathring{X}_{\phi},\mathring{V}_{\phi}) = \lim_{n \to \infty} (X_{\phi_n},V_{\phi_n})$ и $\{\phi_n\}$ — любая последовательность функций из W_T , сходящаяся в метрике ϕ_T к функции ϕ . Отображение \mathring{S}_{-t}^{Φ} обладает всеми необходимыми свойствами для того, чтобы оператор K был определен на функциях из множества \mathring{W}_T .

Лемма 2. Пусть функция $\varphi(x,t) \in \mathring{W}_{T}^{*}$, тогда функция $K(\varphi) \in W_{T}$. Идея доказательства этого утверждения следующая. Для нормы $\|K(\varphi)\|$ имеем оценку $\|K(\varphi)\| \ll C_1\{C_0+2L(0)\|\varphi\|T\}$, где $C_1=1+(b-a)\sup_{x,\xi\in[a,b]}\{|G(x,\xi)|+|G_x(x,\xi)|\}$ и $C_0=\int\limits_{x,\xi\in[a,b]}L(v)\,dv<\infty$. Непрерывность функции $K(\varphi)$ по t удается доказать в предположении, что $f_0(x,v)\ll L(v)$, $\left|\frac{\partial f_0}{\partial x}\right|\ll L(v)$, $\left|\frac{\partial f_0}{\partial v}\right|\ll L(v)$ и $\int\limits_{-\infty}^{+\infty}L(v)\,|v|\,dv<\infty$.

Далее, справедливо следующее утверждение. Пусть $T_0 < \frac{1}{2C_1L(0)}$, $C_2 > \frac{C_0}{1/C_1-2L(0)T_0}$ и функция $\phi(X,t) \in W_{T_0}$ такая, что $\|\phi\| \leqslant C_2$, тогда

 $||K(\varphi)|| < C_2$. Справедливость этого утверждения сразу следует из уста-

новленной выше оценки для $||K(\varphi)||$.

Обозначим через Φ подмножество пространства W_{T_0} , состоящее из функций $\{\varphi(x,t)\}$ с нормами $\|\varphi\| \ll C_2$. Из определения множества Φ следует, что оператор K переводит функции из Φ в Φ . Через Φ^* обо-

значим пополнение Φ в метрике ρ_T . Отметим, что $\Phi^* \subset \mathring{W}_{T_0}^*$. Π е м м а 3. При некотором $T < T_0$ справедливы утверждения:

1. Если функция $\varphi(x, t) \in \Phi^*$, то функция $K(\varphi) \in \Phi$;

2. Оператор K является сжимающим оператором на Φ в метри-

Первое утверждение леммы сразу следует из леммы 2. Приведем идею доказательства сжимаемости оператора К.

Пусть $\varphi_1(x, t)$, $\varphi_2(x, t)$ — функции из Φ .

$$\begin{split} \rho_{T}(K(\phi_{1}), \ K(\phi_{2})) & \leqslant C \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \left| \iint_{\overline{D(\phi_{1},t)}} f_{0} \left(X_{\phi_{1}}, V_{\phi_{1}} \right) dx dv - \iint_{\overline{D(\phi_{2},t)}} f_{0} \left(X_{\phi_{2}}, V_{\phi_{2}} \right) dx dv \right| \leqslant \\ & \leqslant C \sup_{\substack{x \in [a,b] \\ t \in [0,T]}} \iint_{\overline{D(\phi_{1},t)} \cap \overline{D(\phi_{2},t)}} \left(X_{\phi_{1}}, V_{\phi_{1}} \right) - f_{0} \left(X_{\phi_{2}}, V_{\phi_{2}} \right) \left| dx dv + \right| \\ & + CL(0) \sup_{\substack{t \in [0,T] \\ \overline{D(\phi_{1},t)} \setminus \overline{D(\phi_{2},t)}}} \left\{ \iint_{\overline{D(\phi_{1},t)} \setminus \overline{D(\phi_{2},t)}} dx dv + \iint_{\overline{D(\phi_{2},t)} \setminus \overline{D(\phi_{2},t)}} dx dv \right\}. \end{split}$$

Используя первое утверждение леммы 1, для первого интеграла можно доказать оценку:

$$\int_{\overline{D(\phi_1,t)\cap D(\phi_2,t)}} |f_0(X_{\phi_1},V_{\phi_1})-f_0(X_{\phi_2},V_{\phi_2})| dxdv \leqslant C_3(T^2+T)\rho_T(\phi_1,\phi_2),$$

где $C_3 < \infty$ не зависит от норм $\|\phi_1\|$ и $\|\phi_2\|$. Второй и третий интегралы оцениваются следующим образом. Множество точек $D(\phi_1, t) \searrow D(\phi_2, t)$ состоит из тех точек (x, v), для которых $X_{\phi_1} \in (a, b)$ и $X_{\phi_2} \in (a, b)$, но так как $|X_{\phi_1} - X_{\phi_2}| < t^2 \rho_T(\phi_1, \phi_2)$, то можно утверждать, что множество $D(\phi_1, t) \searrow D(\phi_2, t)$ состоит из тех точек (x, v), для которых $X_{\phi_1} \in (a, a + t^2 \rho_T(\phi_1, \phi_2)) \cup (b - t^2 \rho_T(\phi_1, \phi_2), b)$, кроме того, $V_{\phi_1} \in (-C_4)t$. C_4/t) по лемме 1.

Делая замену переменных $(x, v) \rightarrow (X_{\Phi t}, V_{\Phi t})$ с i=1 во втором интеграле и с i=2 в третьем интеграле и учитывая, что якобиан отображения S^{Φ}_{-t} равен единице, получим оценки:

$$\int \int dx dv \ll 4C_4 T
ho_T (\phi_1, \phi_2).$$

Окончательно получим:

$$\rho_T (K (\varphi_1), K (\varphi_2)) \leqslant C \{4C_4T + C_3(T^2 + T)\} \rho_T (\varphi_1, \varphi_2).$$

Выбирая T таким, чтобы коэффициент перед $\rho_T(\phi_1, \phi_2)$ в последнем неравенстве был меньше единицы, получим условие сжимаемости опе-

ратора K на множестве функций Φ .

Для завершения доказательства теоремы следует заметить, что единственная неподвижная точка оператора K находится в Φ^* , но так как оператор K переводит функции из Φ^* в Φ , то единственная неподвижная точка оператора K находится во множестве функций Φ . Теорема доказана.

В заключение автор выражает благодарность проф. А. А. Арсень-

еву за ряд полезных обсуждений.

[1] Иорданский С. В. Тр. МИАН, 1961, 60, с. 181.

Поступила в редакцию 23.02.83

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1983, Т. 24, № 6

УДК 535.42

ФАЗОВЫЕ СООТНОШЕНИЯ ПРИ ДИФРАКЦИИ БРЭГГА

В. И. Балакший, Е. А. Никанорова, В. Н. Парыгин

(кафедра физики колебаний)

1. При исследовании дифракции света на ультразвуке основное внимание уделяется, как правило, рассмотрению характеристик дифрагированной волны [1]. Однако несомненный интерес, особенно для решения прикладных задач акустооптики, представляет также световая волна, проходящая через область акустооптического взаимодействия без отклонения и формирующая в дальней зоне нулевой порядок дифракции. Эта волна тоже испытывает воздействие акустического поля, приводящее к изменению ее параметров.

В данной работе для случая дифракции Брэгга исследована зависимость амплитуды и фазы света в нулевом порядке дифракции от амплитуды акустической волны и угла падения света на область взаимодействия. Рассмотрены особенности прохождения через акустическое поле пространственно-модулированной световой волны. Исследован невзаимный эффект, заключающийся в различии фазовых скоростей световых волн, проходящих область взаимодействия в противоположных направлениях.

2. Предположим, что область акустооптического взаимодействия является изотропной средой и ограничена двумя параллельными плоскостями x=0 и x=1. По оси z параллельно границам области взаимодействия распространяется плоская монохроматическая акустическая волна

$$a(z, t) = a_0 \sin(Kz - \Omega t),$$

где $\underline{a_0}$ — амплитуда, K — волновое число, Ω — частота ультразвука.

Плоская световая волна с амплитудой C^* падает на область взаимодействия под углом θ , причем взаимная ориентация волновых векторов света и звука такова, что наблюдаются дифракционные максимумы нулевого и первого порядков. При брэгговской дифракции комплексная амплитуда волны нулевого порядка на выходе из области взаимодействия (в плоскости x=l) описывается выражением [2]

$$C_0 = C^* \left[\cos \left(\frac{l}{2} V \overline{q^2 + \eta^2} \right) + \frac{i\eta}{\sqrt{q^2 + \eta^2}} \sin \left(\frac{l}{2} V \overline{q^2 + \eta^2} \right) \right] \exp \left(-\frac{i\eta l}{2} \right). \tag{1}$$

Параметр q определяется амплитудой акустической волны:

$$q = k_0^2 \Delta n/(nk_{0x}) = k_0 n^2 p a_0/(2\cos\theta)$$
,

а параметр η характеризует степень фазового рассогласования при акустооптическом взаимодействии:

$$\eta = k_{0x} - k_{1x} = k_0 \cos \theta - k_1 \cos \psi.$$