СПИСОК ЛИТЕРАТУРЫ

[1] Зубов В. Г., Захарова Е. К., Осипова Л. П., Кундикова Н. Д. Вестн. Моск. ун-та. Физ. Астрон., 1976, 17, № 4, с. 475. [2] Зубов В. Г., Осипова Л. П. Кристаллография, 1977, 22, № 1, с. 110. [3] Осипова Л. П., Ивашкин Ю. А. ФТТ, 1981, 23, № 3, с. 919. [4] Зубов В. Г., Осипова Л. П., Кундикова Н. Д. Вестн. Моск. ун-та. Физ. Астрон., 1976, 17, № 5, с. 628. [5] Міtchell W., Paidge E. J. Phil. Mag., 1956, 1, р. 1085. [6] Каtz А. Philips Res. Reports, 1962, 17, р. 113. [7] Міtchell Е. W., Rigden J. D. Phil. Mag., 1957, 2, р. 941. [8] Ельяшевич М. А. Атомная и молекулярная спектроскопия. М.: Гл. редакция физ.-мат. литературы, 1962. [9] О'Тheimer. Canad. J. Phys., 1956, 34, р. 312. [10] Зубов В. Г., Осипова Л. П. Вестн. Моск. ун-та. Физ. Астрон., 1976, 17, № 4, с. 493. [11] Зубов В. Г., Осипова Л. П., Кундикова Н. Д. Вестн. Моск. ун-та. Физ. Астрон., 1980, 21, № 3, с. 73.

Поступила в редакцию 22.07.82

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 1

УДК 539.12

КЛАСТЕ́РНЫЕ ГИПЕРЯДРА

Н. Н. Колесников, В. А. Копылов, А. В. Колесов

(кафедра теоретической физики)

Как уже отмечалось ранее [1, 2], присутствие А-частицы усиливает тенденцию к кластеризации нуклонов в ядрах (см. также [3]), и в ряде случаев образование кластерных структур приводит к выигрышу энергии. Типичными представителями кластерных гиперядер являются ⁹_ABe($\alpha + \alpha + \Lambda$) [1, 2, 4 - 6], ⁶_AHe($\alpha + n + \Lambda$) [7], ⁶_ALi($\alpha + p + \Lambda$) и ${}_{\Lambda}^{7}$ Li ($\alpha + n + p + \Lambda$ или $\alpha + d + \Lambda$), а двойных Λ -гиперядерных систем — $^{10}_{\Lambda\Lambda}$ Be ($\alpha + \alpha + \Lambda + \Lambda$) [2, 4, 5] и $^{6}_{\Lambda\Lambda}$ He ($\alpha + \Lambda + \Lambda$). Кроме того, не исключена возможность существования квазимолекулярной слабо связанной системы $d - \Lambda - d$ с параллельной ориентацией спинов дейтронов [2, 8]. Изучение таких систем, из которых некоторые находятся на пределе стабильности, совместно с другими гиперядрами позволило бы уточнить свойства AN- и AA-сил и некоторые вопросы структуры ядра и взаимодействия ядерных частиц. Анализ ЛЛ-взаимодействия и двойных кластерных гиперядер, проводившийся в [5], содержал значительную степень произвола, так как единственным ограничением для выбора параметров А-а-потенциала было требование воспроизведения правильного значения энергии связи (B_A) гиперядра ^bHe, но не согласование с другими гиперядерными данными. Не была достаточно полно исследована и квазимолекулярная системе $d = \Lambda - d$ [2].

В настоящей работе с Λ —*N*-потенциалами, согласованными с основными гиперядерными данными, были проведены расчеты кластерных гиперядерных систем ⁹_лВе и Λ_{Λ}^{10} Ве и проанализированы свойства Λ — Λ -сил, а также исследована стабильность гиперядерной системы d— Λ —d. Расчет гиперядер ⁹_лВе и Λ_{Λ}^{10} Ве проводился с Λ —*N*-потенциалами гауссовской формы (варианты I—IV), согласованными с Λ —*p*-рассеянием и энергиями связи гиперядер ³_лH, ¹⁰_лHe и ¹³_лC [2].

Потенциал $\Lambda - N$ -взаимодействия как в синглетном (s), так и триплетном (t) состояниях имеет вид

$$V_{\Lambda N}^{s,t}(r) = \sum_{i=1}^{3} V_i^{s,t} \exp\left(-\frac{r^2}{(r_i^{s,t})^2}\right).$$
 (1)

Таблица 1

Параметры ΛN -потенциалов (V_i в МэВ, r_i в Фм)

Вариант V _{ЛN}	v ^s	v_2^s	V ^s ₃	v_1^t	V_2^t	v ^t ₃	r ^s 1	r_1^t	r ^s ₂	r_2^t	$r_3^s = r_3^t$
I II III IV	3500 2500 1000 2500	$ \begin{array}{r} -3234 \\ -1149 \\ -855 \\ -2278 \end{array} $	509 22,4 32,2 8,4	1000 1000 1000 2500	-224 411 528 -1505	7 189 197 43,4	0,7 0,2 0,2 0,3	0,25 0,2 0,2 0,3	0,825 0,36 0,355 0,36	0,60 0,36 0,355 0,36	1,04 0,70 0,70 0,90

Параметры потенциалов приведены в табл. 1. Потенциал взаимодействия Λ -гиперона с α -частицей находился путем усреднения Λ —N-потенциала по нуклонной плотности $\rho(r)$ α -частицы:

$$V_{\Lambda\alpha}(\mathbf{r}) = \int \rho(\mathbf{r}') V_{\Lambda N}^{c}(|\mathbf{r} - \mathbf{r}'|) d^{3}\mathbf{r}', \qquad (2)$$

где

$$V_{\Lambda N}^{c}(r) = rac{1}{4} \left(3V_{\Lambda N}^{t}(r) + V_{\Lambda N}^{s}(r)
ight)$$

 $ho(r) = 4\pi^{-3/2} a^{-3} \exp\left(-rac{r^{2}}{a^{2}}
ight).$

Осцилляторный параметр а в соответствии с экспериментальными данными [9] равен 1,225 Фм. В качестве а-а-потенциала использовался локальный потенциал (вариант α₀) Али-Бодмера [10]. Гиперядро ⁹Be рассчитывалось вариационным методом в треугольной системе координат с гауссовскими пробными функциями в соответствии с методом, описанным в [11] и [1]. Энергия связи Вл ³Be гиперядра оказалась равной 7,2; 6,65; 6,5 и 6,6 МэВ для вариантов Л---N-потенциалов I, II, III и IV соответственно. Как видно из приведенных цифр, наиболее близкие к экспериментальному значению (6,71+0,04 МэВ) более короткодействующих результаты получаются для вариантов А—*N*-потенциалов II, III, IV.

В целях выяснения роли кластеризации нуклонного остова гиперядро ${}^{9}_{ABe}$ рассчитывалось также по двухтельной модели (Λ +нуклонный остов) с потенциалом $V_{\Lambda 0}(r)$, рассчитываемым по той же формуле (2) с заменой $\rho(r)$ α -частицы на плотность остова (${}^{8}Be$). Последняя бралась в соответствии с осцилляторной моделью, а параметры находились путем интерполяции данных по рассеянию электронов на соседних ядрах (принятое значение *а* для ${}^{8}Be$ равно 1,60 Фм). Найденные по двухтельной модели $B_{\Lambda}({}^{9}_{\Lambda}Be)$ оказались на 1,8÷2,0 МэВ меньше, чем при трехтельном расчете, что свидетельствует об энергетической выгодности кластеризации.

Аналогично этому гиперядро ${}^{10}_{\Lambda\Lambda}$ Ве рассчитывалось, с одной стороны, как система четырех частиц ($\alpha + \alpha + \Lambda + \Lambda$), а с другой — как система из остова (8 Ве) и двух Λ -частиц (процедура четырехчастичных расчетов заимствовалась из [11]). В случае трехчастичного расчета ${}^{10}_{\Lambda\Lambda}$ Ве при вычислении потенциала $V_{\Lambda 0}(r)$ параметр a в $\rho(r)$ кор ректировался так, чтобы обеспечить (при двухтельном расчете ${}^{5}_{\Lambda}$ Ве) экспериментальное значение B_{Λ} (для этого параметр a должен был равняться 1,488 Фм). Расчет ${}^{10}_{\Lambda\Lambda}$ Ве проводился при двух предположе-

8

ниях относительно формы Λ — Λ -потенциала: в варианте (A) предполагалось, что форма такая же, как для синглетного Λ —N-потенциала, и что $V_{\Lambda\Lambda}(r)$ отличается от $V_{\Lambda N}^{s}(r)$ лишь множителем X; в варианте (B) принималось (с учетом выводов мезонной геории об отсутствии вклада в $V_{\Lambda\Lambda}(r)$ однокаонного обмена), что $V_{\Lambda\Lambda}(r)$ содержит такие же составляющие $V_1(r)$ и $V_3(r)$, как синглетный Λ —N-потенциал, но отличается от последнего компонентой $V_2(r)$, т. е. что $V_{\Lambda\Lambda}(r) = V_1^{s}(r) + + \beta V_2^{s}(r) + V_3^{s}(r)$. Как в варианте (A), так и в варианте (B) значения параметров X и β находились путем совместного анализа энергий связи Λ_{Λ}^{6} Не (расчет по модели $\alpha + \Lambda + \Lambda$) и Λ_{Λ}^{10} Ве ($\alpha + \alpha + \Lambda + \Lambda$). Результаты расчета X и β , а также соответствующих значений В_{ΛΛ} (Λ_{Λ}^{10} Ве) и В_{ΛΛ} (Λ_{Λ}^{10} Li) приведены в табл. 2 для различ-

Таблица 2

Варнанты V _{AN} н V _{AA}	x	β	$B_{\Lambda\Lambda} (^{6}_{\Lambda\Lambda}$ He)	$B_{AA} ({}^{10}_{AA} Be)$	$B_{\Lambda\Lambda}$ (¹⁰ _{A\Lambda} Li)
I A		0,98 (0,98)	10,3 (10,3)	20,1 (17,9)	21,6 (21,6)
IB	(0,725)		(10,35)	(17,6)	(21,3)
11 A		0,72 (0,75)	10,35 (10,85)	18,6 (17,3)	20,8
III A		0,67 (0,70)	10,3 (10,9)	18,8 (17,8)	20,9 (21,4)
IV B	0,58 (0,65)		10,35 (11,2)	18,4 (17,5)	20,2 (21,9)
Эксперимент [16, 17]			10,9±0,5	17,7±0,4	$20,6\pm1,7$

Параметры АА-потенциалов и энергии связи двойных гиперядер (В АА в МэВ)

ных вариантов Л--- N-потенциала. В скобках указаны те значения параметров X и β, а также соответствующих им Влл, при нахождении которых была использована трехтельная модель 10 Ве. Как видно из табл. 2, согласование В_{лл} двойных гиперядер с помощью единого Λ—Λ-потенциала возможно в пределах ошибок эксперимента (и точности четырехчастичных расчетов ~0,7 МэВ). Однако при нахождении параметров А-А-потенциала с использованием четырехтельной модели ¹⁰Ве В_{АА} несколько занижаются для _{АА}Не и завышаются для ¹⁰Ве. Если же параметры X и β определять на основе трехтельных расчетов "10 Ве, то таких трудностей при согласовании не возникает. Отметим также, что в присутствии второй А-частицы расстояние между двумя а-частицами умень пается примерно на 10-12% no сравнению с аналогичной величиной в гиперядре ⁹Ве. Для всех рассматриваемых вариантов <u>Л</u>-*N*-потенциала для обеспечения правильных значений В_{лл} двойных гиперядер потенциал А-Л-взаимодействия должен быть слабее синглетного <u><u>л</u>-*N*-потенциала на 30÷40% (ес-</u> ли в качестве относительной силы Л-Л-потенциала использовать параметр X).

9

Исследование гиперядерной системы $d - \Lambda - d$ проводилось также в треугольной системе координат, однако для достижения лучшей сходимости и точности использовались не гауссовские, а экспоненциальные пробные функции [12]:

$$\psi(r_1, r_2, r_3) = \sum_{i=1}^N C_i \prod_{j=1}^3 \exp(-\alpha_{ij}r_j),$$

где C_i и a_{ij} — линейные и нелинейные вариационные параметры. Использовавшиеся двухчастичные эффективные Λ —*d*-потенциалы вида

$$V_{\Lambda d}^{\kappa, \pi}(r) = \sum_{i=1}^{r} V_i^{\kappa, \pi} \exp\left(-\frac{r}{r_i^{\kappa, \pi}}\right)$$
 были согласованы с энергией $B_{\Lambda}({}_{\Lambda}^{3}H)$

(рассчитанной по модели $\Lambda+d$) и с фазами упругого $\Lambda-d$ -рассеяния в квартетном (к) и дублетном (д) состояниях, которые предварительно были найдены путем трехчастичного вариационного расчета низкоэнергетического $\Lambda-d$ -рассеяния [13]. Параметры эффективных $\Lambda-d$ -потенциалов приведены в [14]. В состоянии с полным спином J=3/2 системы $d-\Lambda-d$ усредненный по спиновым переменным потенциал $\overline{V}_{\Lambda d}(r)$ равен

$$\overline{V}_{\Lambda d}(r) = \frac{1}{6} \left(5 V_{\Lambda d}^{\mathtt{R}}(r) + V_{\Lambda d}^{\mathtt{K}} \right).$$

Потенциал взаимодействия дейтронов $V_{dd}(r)$ согласовывался по фазам d—d-рассеяния [15] в состоянии с полным спином S=2. Поскольку имеющиеся экспериментальные данные не позволяют однозначно определить потенциал d—d-взаимодействия, он брался в виде экспоненты $V_{dd}(r) = V_0 \exp(-r/r_0)$ с возможным добавлением члена аналогичного вида, учитывающего дополнительное ядерное притяжение на больших расстояниях $V_1(r)$ (а также и кулоновское отталкивание). Параметры использовавшихся ядерных d—d-потенциалов: $V_0=6,88$ МэВ, $r_0=3,33$ Фм (вариант ι); $V_0=13$ МэВ, $r_0=3,33$ Фм, $V_1=-3$ МэВ, $r_1=$ =6 Фм (вариант δ); $V_0=14$ МэВ, $r_0=3,33$ Фм, $V_1=-2$ МэВ, $r_1=10$ Фм (вариант δ).

Расчеты показали, что энергия связи системы $d - \Lambda - d$ колеблется в пределах от 0,04 МэВ для варианта *a* до 0,12 МэВ для варианта *в*. Эти результаты относятся к случаям, когда фазы $\Lambda - d$ -рассеяния были рассчитаны с $\Lambda - N$ -потенциалом (II, III), имеющим относительно сильную спиновую зависимость. В случае варианта $\Lambda - N$ -потенциала (I) энергия связи системы $d - \Lambda - d$ для тех же d - d-потенциалов возрастает до 0,18 и 0,24 МэВ соответственно. Весьма интересно, что система $d - \Lambda - d$ (если она окажется стабильной относительно распада на ${}_{\Lambda}^{3}$ Н и ²Н) должна была бы иметь необычно большие размеры ($20 \div$ $\div 40$ Фм) и в связи с этим могла бы иметь ротационные уровни, отстоящие на 10-20 кэВ.

СПИСОК ЛИТЕРАТУРЫ

[1]: Колесников Н. Н. и др. Изв. вузов. Физика, 1977, № 6, с. 75. [2] Колесников Н. Н., Копылов В. А., Колесов А. В. Изв. АН КазССР, 1982, № 4, с. 1. [3] Неудачин В. Г., Смирнов Ю. Ф. Нуклонные ассоциации в легких ядрах. М.: Наука, 1969. [4] Водтег А. R., Ali S. Nucl. Phys., 1964, 56, р. 450. [5] Tang Y. C., Herndon R. C. Phys. Rev., 1965, 128, р. В 637. [6], Verma S. P., Sural D. P. Phys. Rev., 1967, C.20, р. 781. [7] Lovitch L., Rosati S. Nuovo Cim., 1967, 51 A, р. 647. [8] Колесников Н. Н., Чернов С. М. Ядерная физика, 1975, 22, с. 218. [9] МсСагthy J. S., Sick I., Whitney R. R. Phys. Rev., 1977, С 15. р. 1396. [10] Аli S., Воdmer А. R. Nucl. Phys., 1966, 80, р. 99. [11] Колесников Н. Н., Тарасов В. И., Старосотников М. И. Деп. ВИНИТИ, № 3832-80. [12] Колесников Н. Н., Тарасов В. И. Изв. вузов. Физика, 1977, № 7, с. 98. [13] Колесников Н. Н., Копылов В. А. Изв. вузов. Физика, 1981, № 9; с. 114. [14] Колесников Н. Н., Копылов В. А., Колесов А. В. Тез. докл. 32-го совещ. по ядерной спектроскопии и структуре атом. ядра. Л.: Наука, 1982, с. 187. [15] Lich D. D. Nucl. Phys., 1972, А 178, р. 375. [16] Pniewski J., Zieminska D. Каон-ядерное взаимодействие и гиперядра. М.: Наука, 1979, с. 187. [17] Mondal P., Saha M. Canad. J. Phys., 1980, 58, р. 300.

Поступила в редакцию 04.10.82

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 1

УДК 530.145

пятимерие и теория атома водорода

Ю. С. Владимиров, В. В. Кислов

(кафедра теоретической физики)

1. Введение. Зависимость физических величин от пятой координаты в пятимерной теории поля. Как известно, пятимерный подход к построению объединенной теории гравитации и электромагнетизма впервые был предложен в работе Т. Калуцы [1]. Уже первые варианты теории показали, что 15 пятимерных уравнений типа уравнений Эйнштейна естественным образом распадаются на 10 стандартных электровакуумных уравнений Эйнштейна, 4 уравнения второй пары уравнений Максвелла (без источников) и 15-е уравнение, которое предполагает возможность ввода еще одного (скалярного) поля. Существенной чертой первых вариантов теории является условие цилиндричности (независимости) геометрических величин по пятой координате.

Однако даже в этих вариантах теории условие цилиндричности не распространялось на негеометрические (внешние) величины, например на волновые функции полей. Последние могли зависеть от x⁵, причем тогда операторы пространственно-временного дифференцирования должны были заменяться на калибровочно-инвариантные операторы [2]:

$$\partial_{\mu}^{+}\psi \equiv \left(\frac{\partial}{\partial x^{\mu}} - \frac{G_{\mu 5}}{G_{55}} \frac{\partial}{\partial x^{5}}\right)\psi = \left(\frac{\partial}{\partial x^{\mu}} + \frac{2\gamma\bar{k}}{c^{2}}A_{\mu}\frac{\partial}{\partial x^{5}}\right)\psi, \quad (1)$$

где учтено, что векторный электромагнитный потенциал A_{μ} связан с компонентами пятимерной метрики G_{AB} соотношением $A_{\mu} = -\frac{c^2}{2\sqrt{k}} \times G$

 $\times \frac{G_{5\mu}}{G_{55}}$, k — ньютоновская постоянная тяготения. (Здесь и в дальнейшем греческие индексы пробегают значения 0, 1, 2, 3.)

Заметим, что оператор (1) совпадает с оператором, используемым в стандартной электродинамике: ${}^+\partial_{\mu}\psi \equiv \left(\partial_{\mu} - \frac{ie}{\hbar c} A_{\mu}\right)\psi$, если предположить специальный вид зависимости волновой функции заряженного скалярного поля ψ от пятой координаты:

$$\psi = \psi(x^{\mu}) \cdot \exp\left(-\frac{iec}{2\sqrt{k}\hbar} x^{5}\right).$$
(2)

Легко также показать, что известные калибровочные (градиентные) преобразования электромагнитного потенциала A_{μ} и волновых функций

11