	V, см ³ /г								
P, MIIa	115 K		120 K		125 K		130 K		
	(11)	[1]	(11)	[13	(11)	[1]	(11)	[1]	
4,5	0,8171	0,8166	0,8431	0,8433	0,8730	0,8730	0,9084	0,9114	
2,5	-	_	_			_	0,9339	0,9323	
2,0		_			0,8920	0,8929	0,9363	0,9385	
1,5			0,8600	0,8600	0,8965	0,8972	0,9433	0,9453	
1,0	0,8326	0,8317	0,8634	0,8632	0,9012	0,9018	0,9510	0,9528	
0,5	0,8351	0,8342	_	-	0,9062	0,9066	0,9593	0,961	
0,1	0,8371	0,8362	0,8697	0,8695	0,9105	0,911	0,9660	0,968	
_1,0	0,8431	0,8421	0,8781	0,8775	0,9236	0,924	0,9929	0,993	
-3,0	0,8554	0,854	0,8964	0,895	0,9560	0,955		_	
-5,0	0,8701	0,869	0,9211	0,919	—	—	—		
-8,0	0,9011	0,899	_		~~	_			

веденным в таблице. Горизонтальные линии в таблице соответствуют условиям равновесия жидкость — пар, ниже их — метастабильные состояния. Среднее квадратичное отклонение составляет 0,14% (с учетом изотермы 140 К — 0,32%), максимальное отклонение не превышает 0,3%. При расчетах использовались критические данные из [7], параметр В определен на основе формулы (6) (B=1,732). Единственный параметр, который найден подбором, — это l. Оптимальное значение l=1,19 весьма близко к среднему значению l=1,2.

Изложенное позволяет сделать вывод, что рассматриваемый подход обеспечивает хорошее количественное описание области состояний вещества, труднодоступной для исследования.

СПИСОК ЛИТЕРАТУРЫ

[1] Скрипов В. П. и др. Теплофизические свойства жидкостей в метастабильном состоянии. М.: Атомиздат, 1980. [2] Анисимов М. А. УФН, 1974, 114, № 2, с. 249. [3] Davis B. W., Rice O. K. J. Chem. Phys., 1967, 47, N 12, p. 5043. [4] Hall K. R., Eubank Ph. T. Ind. Eng. Chem., Fundam., 1976, 15, N 4, p. 323. [5] Riedel L. Chemie-Ing. — Techn., 1954, 26, N 5, p. 259. [6] Филиппов Л. П. Подобие свойств веществ. М.: Изд-во МГУ, 1978. [7] Анисимов М. А. и др. ЖЭТФ, 1974, 66, с. 742.

Поступила в редакцию 05.07.83

ВЕСТН. МОСК. УН-ТА. СЕР. З. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 3

УДК 621.385.833

ТЕМПЕРАТУРНАЯ РЕЛАКСАЦИЯ ЭЛЕКТРОННО-СТИМУЛИРОВАННОЙ КАТОДОЛЮМИНЕСЦЕНЦИИ Gan: Zn

Г. А. Перловский, С. К. Обыден, Г. В. Сапарин, С. И. Попов

(кафедра электроники)

В работах [1, 2] описан эффект активации локальной катодолюминесценции (КЛ) GaN: Zn. При непрерывном облучении электрояным пучком *i*-области *i* — *n* структуры на основе GaN: Zn наблюдался рост полосы КЛ с максимумом при $\hbar\omega = 2,87$ эВ. Интенсивность излучения ($I_{\kappa n}$) возрастала на 1,5—2 порядка по сравнению с интенсивностью в начальный период облучения. После прогрева образца до температуры 450—500 К и отжига в таких условиях в течение нескольких минут интенсивность $I_{\kappa n}$ облученных участков спадала до уровня необлученных, и весь цикл активации мог быть осуществлен повторно. Наша работа посвящена количественному исследованию температурной динамики эффекта активации КЛ в i - n структуре на основе GaN: Zn в диапазоне температур 300—450 К.

При воздействии на i - n структуру GaN: Zn электронным пучком высокой плотности (~200 A/см²) в объекте происходят качественные изменения, сопровождающиеся увеличением квантового выхода КЛ в облученных участках. Для количественной характеристики этого состояния введем понятие уровня активации β , который определим следующим образом:

$$\beta = \frac{I_0 - I_{R0}}{I_{R0}}, \qquad (1)$$

где I_о и I_{но} — интенсивности КЛ облученных и необлученных участков соответственно.

Уменьшение уровня активации со временем и ускорение релаксации с ростом температуры указывает на температурную зависимость скорости перехода объекта в равновесное состояние. Поэтому можно записать, что $\beta = \beta(T, t)$, где T — абсолютная температура, t — время. Получая семейство кривых $\beta|_{T=const}(t)$, можно определить зависимость времени релаксации системы от температуры и на основании этого делать предположения о физическом механизме процесса активации. Постановка такого эксперимента предполагает активацию образца до насыщения при температуре, для которой можно пренебречь релаксацией, мгновенное повышение температуры, ее стабилизацию и затем измерение зависимости $\beta|_{T=const}(t)$. В реальных условиях температура может подниматься только с конечной скоростью по закону T=T(t). При этом величина $\beta = \beta(T(t), t)$ становится функционалом температуры, зависящим от времени. Это обстоятельство должно быть учтено в эксперименте.

Целью данной работы явилось получение кривых $\beta|_{r=const}(t)$ и расчет по ним зависимости времени релаксации от температуры.

Регистрируемую интенсивность $I_{\kappa n}$ активированных участков при постоянной температуре T_0 можно представить в следующем виде:

$$I(T_{0}, t) \sim \eta(T_{0}, t) = \chi_{0}(T_{0})\beta|_{T=\text{const}}(t) + \chi_{\text{H0}}(T_{0}),$$

где η — квантовая эффективность материала; $\chi_0(T_0)$ н $\chi_{Ho}(T_0)$ — коэффициенты, определяющие температурное (обратимое) тушение КЛ для облученных и необлученных областей; $\beta|_{T=const}(t)$ — множитель, определяющий необратимое тушение КЛ с учетом зависимости уровня активации от температуры и времени, в течение которого объект находился при заданной температуре T_0 .

Сильное уменьшение $I_{\kappa n}$ с ростом температуры из-за температурного (обратимого) тушения делает затруднительным измерение прямыми методами уровня активации β при температуре T > 400 К. Поэтому для измерения β был предложен метод изохронного отжига. Исследуемый участок образца активировался до насыщения при комнатной температуре, а затем образец нагревался до определенной температуры с максимальной скоростью роста T(t), и температура стабилизировалась в течение времени t_1 . После быстрого охлаждения до

комнатной температуры измерялась величина I_0 . Затем, после новой активации до насыщения, образец нагревался с той же скоростью до той же температуры, и температура стабилизировалась. Через время $t_2 > t_1$ образец охлаждался до 300 К и регистрировалась величина I_0 и т. д. По формуле (1) вычислялись значения $\beta |_{T=const}(t)$. Так как для каждого измерения повышение температуры происходило по одному и

тому же закону, регистрировался спад уровня активации от одного и того же его значения в точке стабилизации при постоянной температуре. Для повышения точности на образце активировались три точки, и в качестве I₀ брался усредненный по трем точкам результат. Чтобы свести к минимуму влияние анализирующего электронного пучка на уровень активации, измерения проводились в растровом электронном микроскопе (РЭМ) посредством однократного сканирования исследуемой площади объекта и записи результатов с помощью запоминающего осциллографа. Горизонтальная развертка осциллографа была

Рис. 1. Гистограммы распределения интенсивности КЛ активированных участков при комнатной температуре до отжига (а) и лосле отжига в течение 100 с при температуре 370 К (б)

засинхронизирована со строчной разверткой РЭМ, а сигнал КЛ подавался на вход Y. В этом случае на экране осциллографа получались гистограммы $I_{\kappa\pi}$ светящейся точки по профилю ее поперечного сечения (рис. 1, a, δ).

В результате экспериментов было построено семейство кривых $\widehat{\beta}|_{T=\text{const}}(t)$, изображенных на рис. 2, где $\widehat{\beta}|_{T=\text{const}}(t) = \beta |_{T=\text{const}}/\beta_{\text{max}}$ — нормированный уровень активации.

Для расчета по этим кривым времени релаксации необходимо сделать дополнительные предположения. Пусть скорость релаксации системы зависит только от температуры и степени неравновесности, которая в нашем случае характеризуется значением β, т. е.

$$\frac{d\beta}{dt} = B(T, \beta).$$

Сделаем также предположение о характере релаксации. Пусть она происходит по экспоненциальному закону:

$$\frac{d\beta}{dt} = -\frac{1}{\tau(T)} \beta(t), \qquad (2)$$

где $\tau(T)$ — время релаксации системы, зависящее от температуры.

Для определения $\tau(T)$ мы использовали два метода. Первый получение τ из кривых спада уровня активации при постоянной температуре (см. рис. 2):

$$\beta(t) = \beta_{\theta} \exp\left(-\frac{t}{\tau(T_{\theta})}\right),$$

тогда

$$\tau(T_0) = \left(\frac{d}{dt} \ln \frac{\beta_0}{\beta(t)}\right)^{-1}.$$

Второй способ — вычисление τ по измеренной зависимости β от времени (рис. 3, кривая 1) при условии, что закон изменения (роста) температуры T(t) от времени известен (рис. 3, кривая 2). Тогда из (2) имеем

$$\tau(T) = -\beta(t) \left(\frac{d\beta}{dt}\right)^{-1}.$$

Зная закон изменения T(t), можно получить обратную зависимость t = t(T). Тогда выражение для т запишется в виде

Рис. 2. Зависимость нормированного уровня активации от времени для различных фиксированных температур

$$\tau(T) = \frac{\beta(t(T))}{\frac{d}{dt} \beta(t(T))}.$$

По данным графиков (см. рис. 2, 3) была рассчитана зависимость времени релаксации от температуры. Результаты расчетов приведены на рис. 4. Наличие на графиках зависимости $\beta(T)$ плато (см. рис. 3) и асимптоты (см. рис. 2) позволяет говорить о существовании двух времен релаксации. Поэтому нормированную зауровня висимость активации от времени при посто-

янной температуре можно представить в виде

$$\widehat{\beta}|_{T=T_0}(t) = \widehat{\beta}_{10} \exp\left(-\frac{t}{\tau_1(T_0)}\right) + \widehat{\beta}_{20} \exp\left(-\frac{t}{\tau_2(T_0)}\right),$$

где τ_1 — время релаксации для быстро спадающей компоненты уровня активации, τ_2 — время релаксации для медленно спадающей компоненты уровня активации, $\hat{\beta}_{10}$, $\hat{\beta}_{20}$ — амплитудные значения нормированного уровня активации быстрой и медленной компоненты соответственно ($\hat{\beta}_{10} = 0.69 \pm 0.01$, $\hat{\beta}_{20} = 0.31 \pm 0.01$).

Каждое из времен релаксации можно связать с соответствующей характерной энергией активации, причем эти времена можно представить в виде

$$\begin{aligned} \boldsymbol{\tau}_{1}\left(T\right) &= \boldsymbol{\tau}_{1}^{300} \exp\left(\frac{E_{1}}{kT} \frac{T_{0}-T}{T_{0}}\right), \\ \boldsymbol{\tau}_{2}\left(T\right) &= \boldsymbol{\tau}_{2}^{300} \exp\left(\frac{E_{2}}{kT} \frac{T_{0}-T}{T_{0}}\right), \end{aligned}$$

где τ_1^{300} , τ_2^{300} — времена релаксации для быстро и медленно спадающей компоненты при комнатной температуре $T_0=300$ К. Результаты расчета по экспериментальным кривым (см. рис. 4) дают для τ_1^{300} и τ_2^{300} следующие значения: $\tau_1^{300}=2,5\cdot10^3$ с, $\tau_2^{300}=1,5\cdot10^7$ с. После логарифмирования этих зависимостей были рассчитаны энергии E_1 и E_2 $(E_1=0,59\pm0,05$ эВ, $E_2=1,0\pm0,2$ эВ). Зная зависимость нормированной интенсивности $I_{\kappa n}$ от температуры при температурном (обратимом) тушении, можно определить энергию излучающего уровня [3]. Такую зависимость для активированных участков можно получить при максимальной скорости роста температуры от времени (в нашем случае і град/с), когда релаксацией можно пренебречь. В координатах (ln I, T^{-1}) эта зависимость должна изображаться прямой, по наклону которой можно определить энергию излучающего уровня.

Результаты измерений для активированных и неактивированных областей в пределах ошибок измерений совпали (см. рис. 4). Энергия излучающего уровня для активированных и неактивированных обла-

Рис. 3. Зависимость нормированного уровня активации от времени (1) при непрерывном росте температуры (2)

Рис. 4. Зависимость логарифма интенсивности КЛ для облученных и необлученных областей (1) и логарифма времени релаксации для быстро (2) и медленно (3) спадающей компоненты уровня активации от обратной температуры

стей оказалась равной $E=0,56\pm0,05$ эВ, что совпало с результатами спектральных измерений [1] и в пределах ошибок измерений совпало с характерной энергией E_1 , соответствующей времени релаксации τ_1 для быстро спадающей компоненты уровня активации.

Используя полученные экспериментальные данные, можно выдвинуть некоторые предположения, качественно объясняющие наблюдаемое явление. Равенство энергий излучающих уровней для активированных и неактивированных областей указывает на одинаковую природу излучающих центров в обоих случаях. При этом процесс активации (т. е. возрастание квантовой эффективности материала) можно интерпретировать как рождение новых центров люминесценции. Эффективному созданию новых центров при условии, что *i*-слой полностью скомпенсирован или даже имеет проводимость р-типа, соответствует процесс деионизации атомов акцепторной примеси при взаимодействии их с электронами первичного пучка. Такая деионизация эквивалентна заполнению акцепторного уровня дырками, что приводит к повышению вероятности излучательной рекомбинации через этот уровень. Процесс релаксации после прекращения облучения связан с ионизацией примесных центров посредством захвата ими электронов из валентной зоны. Для больцмановского распределения электронов по энергиям релаксация будет происходить по экспоненциальному закону с характерным временем, определяемым энергией излучающего уровня. В нашем случае это соответствует времени релаксации т₁. Релаксацию «медленной» компоненты уровня активации можно связать с наличием глубокого уровня, отстоящего на величину E_2 от дна зоны проводимости и соответствующего центрам захвата электронов. Заполнение этого уровня электронами в процессе облучения приводит к эффективному уменьшению концентрации центров безызлучательного захвата. После прекращения возбуждения освобождение захваченных электронов и вследствие этого рост концентрации безызлучательных центров будет происходить по экспоненциальному закону с характерным временем τ_2 , определенным энергией рассматриваемого уровня.

	<i>T</i> , °C							
β	0	20	40	60	80	100		
4 3 2 1	35 лет 40 лет 50 лет 65 лет	2 года 2,2 года 2,7 года 3,4 года	70 сут 75 сут 80 сут 100 сут	6 сут 7 сут 8,5 сут 10 сут	20 ч 22 ч 1 сут 1,5 сут	3,5ч 4ч 5ч 6ч		

Время	хранения	активированного	состояния
-------	----------	-----------------	-----------

Так как акцепторный и ловушечный уровни находятся на большой глубине в запрещенной зоне, то активированное состояние может сохраняться очень долго. В таблице приводятся времена хранения активированного состояния, рассчитанные для различных конечных значений уровня активации в интервале температур 0.-100° С. Расчет проводился на основании измеренных значений τ_1^{300} , τ_2^{300} , E_1 , E_2 . Экспериментально было подтверждено сохранение активированного состояния в течение 25 мес с момента активации при комнатной температуре.

В заключение выражаем благодарность М. В. Чукичеву и И. Ф. Четвериковой за предоставленные образцы и полезные замечания по интерпретации результатов экспериментов.

СПИСОК ЛИТЕРАТУРЫ

[1] Сапарин Г. В. и др. Вестн. Моск. ун-та. Физ. Астрон., 1983, 24, № 3, с. 56. [2] Сапарин Г. В. и др. Препринт № 06/1983, физ. фак. МГУ. М., 1983. [3] Гурвич А. М. Введение в физическую химию кристаллофосфоров. М.: Высшая школа, 1971, с. 31.

Поступила в редакцию 06.09.83

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25. № 3

УДК 539.129

РОЖДЕНИЕ ЭЛЕКТРОН-ПОЗИТРОННОЙ ПАРЫ НЕИТРИНО В ПОСТОЯННОМ ВНЕШНЕМ ПОЛЕ

М. Ю. Книжников, А. В. Татаринцев

(кафедра теоретической физики)

Рассмотрение вопросов влияния внешних полей на характер взаимодействия элементарных частиц является важным аспектом квантовой электродинамики. Лептонные процессы, запрещенные в вакууме, но протекающие под действием внешних полей, вызывают сей-