УЛК 538.563:621.373.7

## ИССЛЕДОВАНИЕ ПРЕДЕЛЬНОЙ ЧУВСТВИТЕЛЬНОСТИ ПАРАМЕТРИЧЕСКОГО КВАНТОВАТЕЛЯ ФАЗЫ

С. И. Гасанов, В. П. Комолов, И. Т. Трофименко

(кафедра радиофизики СВЧ)

Известно, что параметрический квантователь фазы (ПКФ) может применяться в качестве входного устройства высокочувствительного узкополосного приемника слабых радиосигналов с цифровой обработкой. Принцип его действия подробно описан в [1]. Основным источником внутренних помех «идеального» ПКФ является тепловой шум последовательного сопротивления варикапа, среднеквадратичное напряжение которого, измеренное в контуре квантователя в предосцилляционный период, равно  $\sigma = \sqrt{kT/C}$  (k — постоянная Больцмана, T — абсолютная температура перехода, C — средняя емкость варикапа). Здесь предполагается, что периодический запуск ПКФ осуществляется путем полного отключения источника накачки, при этом можно считать, что до регенерации колебательный контур ПКФ находится в тепловом равновесии с окружающей средой. Чувствительность ПКФ к входному гармоническому синхронному сигналу в этом случае определяется так:

$$\Delta h \simeq \Delta P = \Phi[A_c/(\sigma\sqrt{2})], \tag{1}$$

где  $\Delta P$  — разность вероятностей, а  $\Delta h$  — экспериментально измеряемая разность относительных частот фаз «0» и «л»  $\Pi K\Phi$ ,  $A_c$  — амплитуда входного сигнала в контуре  $\Pi K\Phi$ ,  $\Phi$  — интеграл вероятностей.

Однако практически реализация потенциально высокой чувствительности ПКФ требует принятия ряда специальных мер схемного характера и выбора определенного режима работы.

Снижение реальной чувствительности ПКФ обусловлено в первую очередь возбуждением в контуре «ударных» колебаний радиоимпульсом накачки и наличием в контуре электрического сигнала накачки. Помехи этого рода можно снизить при использовании балансных схем ПКФ и колоколообразных радиоимпульсов накачки с дополнительной режекцией спектральных компонент, близких по частоте к субгармонике [1].

Другой причиной аппаратурного характера является проникновсние в контур вспомогательного опорного сигнала фазового детектора, являющегося необходимой частью системы регистрации выходного сигнала ПКФ. В данной работе в схеме фазового детектора использовалось импульсное стробирование, позволившее полностью устранить эту помеху.

Наконец, еще одним фактором, ограничивающим реальную чувствительность ПКФ (его помехоустойчивость), является сравнительно низкое быстродействие ПКФ с радиоимпульсной накачкой, что, в свою очередь, обусловлено наличием так называемой переходной помехи — влиянием остаточных затухающих колебаний субгармоники после окончания радиоимпульса накачки. Согласно теореме Котельникова, потери информации при квантовании слабого узкополосного сигнала отсутствуют, если дискретные выборки следуют с частотой модуляции  $f_{\rm M} = \Delta f = f/Q$  (Q — добротность нерегенерированного контура,  $\Delta f$  — его

полоса пропускания, f — средняя частота). На практике реализовать такую частоту выборок для слабых сигналов не удается именно из-за

переходной помехи, упомянутой выше.

Для оценки максимального быстродействия реального ПКФ с П-образной модуляцией накачки предположим, что нарастание параметрических колебаний в контуре происходит по экспоненте с показателем  $(-1/(2Q)+m)\omega t$  (m- коэффициент модуляции емкости кон-

Д1

K

ГИ2

 $\mathcal{C}_{\delta A}$ 

 $C_{\delta n}$ 

Е<sub>см</sub> Д2

ГН

Вход

тура), а затухание переходной помехи— по экспоненте с показателем вида — $\omega t//(2Q)$ . Период следования выборок  $T_{\rm M}=1/f_{\rm M}$  определяется суммой времен достижения некоторого уровня параметрических колебаний A, близкого к стационарному, и спада переходной помехи до уровня  $A_0$ , лежащего ниже уровня шумов. Минимум  $T_{\rm M}$  достигается при Q=2/m. Конкретные условия, характерные для эксперимента, приво- L3 дят к следующей оценке:  $m \simeq 0,15$ , соответственно  $Q \simeq 15$ ,  $a = A/A_0 \simeq 10^8$ . Отсюда  $f_{\rm M} = \pi f/(2Q \ln a) \simeq 0,06 \Delta f$ , т. е. по крайней мере на порядок меньше потенциально необходимой частоты выборок.

Применение «параметрического гашения» с помощью небольшого дополнительного непрерывного сигнала накачки, противофазного основному (радиоимпульсному)

сигналу накачки, позволяло довести частоту выборок до величины по-

рядка  $(0.25 \div 0.3) \Delta f$ .

Значительно ускорить затухание переходной помехи и увеличить частоту выборок удается путем дополнительной модуляции добротности контура — значительного ее снижения на короткое время в паузе. Этот способ был экспериментально проверен в данной работе на модели ПКФ радиочастотного диапазона, схема которого изображена на рисунке. Балансный контур содержит два идентичных варикапа  $\mathcal{I}I$  и  $\mathcal{I}\!\!I2$  и катушку индуктивности  $L_{\kappa}$ . Источники смещения  $E_{\mathsf{cm}}$  обеспечивают выбор рабочей точки варикапов. Радиоимпульсы накачки с П-образной огибающей поступают от опорного источника непрерывных колебаний  $\Gamma H$  через амплитудный манипулятор MH. Противофазный режим питания варикапов обеспечивается соответствующим включением катушек L1, L2 и L3, намотанных на кольцевом сердечнике. Блокировочные ( $C_{6\pi}$ ) и разделительные ( $C_{
m p}$ ) конденсаторы разделяют цепи балансировки постоянного и переменного тока в контуре. Сигнал опорного генератора  $\Gamma H$  после деления частоты в четное число раз (делитель  $\mathcal{oldsymbol{\mathcal{H}}} Y$ ) используется для модуляции накачки и запуска двух генераторов импульсов  $\Gamma И1$  и  $\Gamma И2$ . Короткие импульсы с выхода  $\Gamma И1$ длительностью несколько меньшей полупериода субгармоники поступают на схему совпадений («И»), которая используется в качестве селектора квантованных фаз ПКФ. Модулятор добротности  $M\mathcal{I}$  выполнен на полевом транзисторе с изолированным затвором, канал которого подключен параллельно контуру ПКФ; управляющий сигнал с выхода генератора  $arGamma ar{H}2$  подается между затвором и подложкой транзистора.

Симметричный монтаж схемы квантователя, тщательная экранировка и наличие двух регулировок баланса (по напряжению смещения — потенциометр R1, по сигналу накачки — R2) позволили снизить уровень аппаратурных помех до величины порядка одной десятой доли

микровольта. Кривая обнаружения при этом практически совпадает с

теоретической (1).

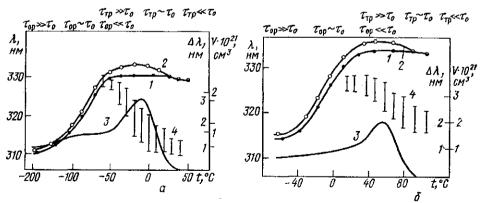
Применение модулятора добротности позволило уменьшить период квантования больше чем на порядок (с величины  $\sim 10^3$  до  $40 \div 60$  периодов субгармоники).

## СПИСОК ЛИТЕРАТУРЫ

[1] Комолов В. П., Трофименко И. Т. Квантование фазы при обнаружении радиосигналов. М.: Сов. радио, 1976.

Поступила в редакцию 15.07.83

ВЕСТН, МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25. № 3


УЛК 535.37:539.283

## ЗАВИСИМОСТЬ ДЛИННОВОЛНОВОГО КОНЦЕНТРАЦИОННОГО СМЕЩЕНИЯ СПЕКТРОВ ЛЮМИНЕСЦЕНЦИИ МОЛЕКУЛ ОТ ПРИРОДЫ МЕЖМОЛЕКУЛЯРНЫХ РЕЛАКСАЦИЙ В РАСТВОРАХ

Б. Д. Рыжиков, Л. В. Левшин, Н. Р. Сенаторова, Ю. Р. Павленко

(кафедра общей физики для физического факультета)

Длинноволновое концентрационное смещение спектров люминесценции (ДКССЛ) [1, 2], возникающее (при отсутствии физико-химических превращений в растворах) в результате направленной миграции энергии электронного возбуждения по системе примесных центров, является одним из экспериментальных проявлений спектральной неоднородности среды относительно процесса стационарной люминесценции. Для жидких растворов органических соединений в индивидуальных растворителях механизм межмолекулярных релаксаций, способных вызвать ДКССЛ, до настоящего времени не определен, хотя это явление неоднократно наблюдалось в растворах красителей (см., например, [3]). В настоящей работе с целью выяснения природы таких релаксаций было проведено исследование зависимости ДКССЛ этанольных растворов бензокарболина (БК) от температуры.



Температурные зависимости положения максимумов спектров люминесценции разбавленного (1) и концентрированного (2) растворов БК, а также ДКССЛ (3) и объема молекул растворенного вещества с их сольватными оболочками V (4) в этаноле — a и глицерине — b;  $\tau_{\rm op}$  — длительность ориентационных,  $\tau_{\rm tp}$  — длительность трансляционных релаксаций растворителя в сольватных оболочках молекул растворенного вещества,  $\tau_{\rm o}$  — среднее время жизни возбужденного синглетного состояния молекул БК. Значения V приведены по работе [6]