УДК 535.417

КРАТКИЕ СООБЩЕНИЯ

ИНТЕРФЕРЕНЦИОННЫЕ ОТРАЖАТЕЛИ ПРИ СКОЛЬЗЯЩЕМ ПАДЕНИИ Света

А. Ю. Клементьева

(кафедра оптики и спектроскопии)

В современном физическом эксперименте используются световые пучки, отражающиеся при больших углах к нормали, порядка $85-90^{\circ}$. При таком скользящем падении света в воздухе, как показывают оценки по формулам Френеля [1], коэффициент отражения от поверхностей оптических материалов возрастает, достигая значений 0,60-0.95 ($\theta = 89.5^{\circ}$, $n_0 = 1.5$). Задача дальнейшего увеличения коэффициента отражения до значений, близких к 1, с помощью многослойных диэлектрических систем с учетом их специфических свойств рассмотрена в данной работе.

Как показывает расчет, спектральные кривые отражения диэлектрических двухкомпонентных зеркал типа $HL \dots LHD$ (H и L — четвертьволновые пленки с высоким и низким показателями преломления), обычно имеющие плато высокого отражения, сильно деформируются при скользящем падении света, и зеркала становятся неэффективными. Область отражения зеркал становится значительно уже и смещается в коротковолновую часть спектра, спектральная кривая отражения для *p*-компоненты пучка сильно снижается, обнаруживая в ряде случаев провал R в центральной части плато отражения.

Ухудшение свойств зеркал связано с тем, что для большинства диэлектриков углы прохождения света в слоях близки к углам Брюстера (превышают $\theta_{\rm Бp}$ на несколько градусов — см. таблицу), что ведет к уменьшению френелевских коэффициентов отражения *p*-компоненты поляризации пучка и возникновению дополнительных сдвигов фазы на π на границах слоев.

Матернал слоя	Na ₃ AlF ₆	CeF ₃	PbF_2	SiO	ZnS	Ge
Угол преломления в слое (град)	48,3	38,7	34,8	31,8	25,7	14,5
Угол Брюстера на границе с соседним слоем (град)	59,8	40,8	37,4	35,2	30,2	19,3
Показатель преломления соседних слоев	2,30	1,38	1,34	1,34	1,34	1,40

Углы прохождения света в слоях диэлектрического зеркала и углы Брюстера на границах этих слоев при скользящем падении световой волны на систему

Большую роль при $\theta \rightarrow 90^{\circ}$ начинает играть отражение на внешней границе первого слоя покрытия, которое становится сравнимым по величине с отражением на нижней границе этого слоя. В случае целочисленности порядка интерференции слоя, равного $2n_1h_1\cos\theta_1/\lambda + (\beta_1 + +\beta_2)/(2\pi) = K$, он обусловливает появление пиков пропускания и соответствующих им минимумов отражения в центре плато отражения зеркал, которые могут иметь место как для *p*-, так и для *s*-составляющей пучка.

Особенности свойств многослойных диэлектрических зеркал хорошо видны из рисунка, где приведены спектральные кривые отражения 9-, 10- и 16-слойных систем ZnS—Na₃AlF₆ ($n_H=2,3, n_L=1,34, n_0=1,52$). Характеристики зеркал R_s , R_p и (R_s+R_p)/2 для неполяризованного света были рассчитаны матричным методом с помощью ЭВМ [2, 3].

9-слойная система зеркал имеет провал в спектре отражения, который можно устранить добавлением одного слоя с низким показате-

Спектральные кривые отражения диэлектрических зеркал при скользящем падении света: *I*, 2 — R_s и R_p для 9-слойного зеркала HL...LHD, $\theta=85^\circ$; 3, 4, 5 — R_s , R_p , $(R_s+R_p)/2$ для 10-слойного зеркала LH...LHD, $\theta=85^\circ$; 6 — $(R_s+R_p)/2$ для 16-слойного зеркала LH...LHD, $\theta=89^\circ$; 7, 8 — R_s и R_p для подложки с $n_0=$ = 1,52, $\theta=85^\circ$, $n_H=2,3$, $n_L=1,34$

лем преломления с внешней , стороны покрытия L (кривая 5 на рисунке). Таким образом, системы с внешним L-слоем. обычно не применяющиеся при небольших углах падения из-за снижения R_{max}, являются целесообразными при скользящем падении света, так как имеют гладкую кривую отражения $(R_p + R_s)/2$ и обеспечивают более высокое значение коэффициента отражения.

В целом значения коэффициента отражения поверхности, достигнутые с помощью диэлектрических зеркал, соответствуют примерно тем же значениям чисел слоев зеркал N_i , которые необходимы при нормальном падении света для получения определенного R:

Так при $\theta = 89^{\circ}$ (*R* подложки равно 90%) системы свнешним слоем фторида *L* имеют R_{max} , равный: для 6 слоев — 95,4%, для 8 слоев — 97%, для 10 слоев — 99,2%, что близко к отражению 7-, 9- и 11-слойных зеркал ZnS—Na₃AlF₆ (95,98 и 99,5%) при нормальном падении света. При угле падения 89,5° система *LH*...*LHD* (слои ZnS—Na₃AlF₆) с *N*=16 позволяет получить R_{max} =99,9%; при этом *R* непокрытой подложки равен 95%.

Характерна сильная зависимость спектрального отражения от оптических параметров внешнего слоя: коэффициента преломления $n+i\chi$ оптической толщины nh.

Малое поглощение слоев, как в случае нормального падения, несколько снижает величину R_{max} . Например, для приведенной выше 16-слойной системы *LH ... LHD* (слои ZnS—Na₃AlF₆) отражение снижается на величину 0,05% при $\chi_H = 1 \cdot 10^{-3}$ и $\chi_L = 1 \cdot 10^{-4}$.

Согласование слоев по толщине (когда эффективные оптические толщины слоев зеркала, равные $(nh)_i \cos \theta_i$, приводятся к одному значению $\lambda_0/4$), выполненное автором для систем ZnS—Na₃AlF₆, не позволило увеличить $R_{\rm max}$, однако эта операция дала значительное расширение области отражения, примерно в 1,5 раза, что указывает на эффективность согласования.

Описанные закономерности имеют место для других, применяющихся в настоящее время двухкомпонентных отражателей: PbF₂—Na₃AlF₆, TiO₂—SiO₂, Ge—SrF₂ и др.

Таким образом, использование интерференционных зеркал при скользящем падении света имеет специфические особенности, а именно: сильную зависимость от параметров внешнего слоя, более медлен-

ный рост отражения в зависимости от числа слоев, влияние согласования толщин слоев на ширину области отражения, которые необходимо учитывать для достижения высокой отражательной способности в экспериментальных установках.

Автор благодарит за участие в расчетах систем А. В. Тихонравова и А. И. Дмитриева.

СПИСОК ЛИТЕРАТУРЫ

[1] Розенберг Г. В. Оптика тонкослойных покрытий. М.: ГИТТЛ, 1958. [2] Королев Ф. А., Клементьева А. Ю. Вестн. Моск. ун-та. Физ. Астрон., 1980, 21, № 5, с. 42. [3] Клементьева А. Ю., Тихонравов А. В. Опт. и спектр., 1974, 36, с. 777.

Поступила в редакцию 23.05.83

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 4

УДК 551.515.2

МАКРОМАСШТАБ ТУРБУЛЕНТНЫХ ПУЛЬСАЦИИ В КОНВЕКТИВНОМ ВИХРЕ

С. Б. Бобошина, А. А. Соловьев

(кафедра молекулярной физики)

В настоящее время интенсивно изучаются особенности структуры атмосферных вихрей как при натурных наблюдениях, так и в рамках лабораторного моделирования. Особый интерес представляют исследования условий, при которых в атмосферных вихрях типа тайфунов и торнадо происходит образование упорядоченных структур из нерегулярных турбулентных пульсаций. В работах [1, 2] описаны некоторые особенности поведения осредненных характеристик течения в модели конвективного вихря. При определенных режимах возбуждения вихря наблюдались нарушения монотонности изменения скорости вращения вихря в зависимости от вводимой в него энергии. В настоящей работе предпринимается попытка связать замеченные особенности с изменением макромасштаба турбулентных пульсаций в модели вихря.

Воздушный конвективный вихрь создавался в камере диаметром 50 см и высотой 20 см. Способ возбуждения вихря описан в работе [2]. Измерения скоростей производились методом лазерной анемометрии на установке, описанной в [3]. Измерялись радиальные профили тангенциальной скорости V(r) и турбулентных напряжений— $\rho UV = f(r)$ Здесь U' V' — соответственно радиальная и тангенциальная компоненты пульсационной скорости. Способ измерения турбулентных напряжений основан на определении уширений доплеровского сигнала при различных ориентациях потока по отношению к оптической оси лазерного анемометра [4]. В опытах изменялась температура подстилающей поверхности T. Угол входа потока в вихрь $\theta = 80^{\circ}$ и расстояние от подстилающей поверхности Z = 10 см оставались постоянными.

Нормированные радиальные профили тангенциальной скорости $V/V_m = f(r/r_m)$ показаны на рис. 1, 2. Здесь $V_m -$ скорость, которая достигается в первом максимуме на радиусе r_m . Получено два типа профилей. В первом (см. рис. 1) скорость после достижения максимума плавно уменьшается с удалением от центра вихря. Во втором слу-

63