ного хиггсовского вакуума $\varphi_0 = \psi s$ первоначально казавшихся топологически тривиальными материальных полей φ — сечений расслоения λ . Однако, в отличие от обычного хиггсовского вакуума в ситуации спонтанного нарушения симметрии, $\varphi_0 = \text{const}$ и не может имитировать появление массы у материальных и калибровочных полей.

Пусть E' — другое нетривиальное прямое слагаемое расслоения λ той же размерности l, что и E, а φ'_0 — его глобальное сечение. Тогда введение в лагранжиан материальных полей φ хиггсовского поля $\sigma(x) = \varphi_0(x) \varphi'_0(x)$ и члена взаимодействия $\overline{\varphi} \sigma \varphi$, не нарушающего калибровочной ковариантности лагранжиана, приводит к появлению ненулевых аномальных функций Грина $G(\overline{\varphi}, \varphi')$ от полей $\overline{\varphi}, \varphi'$, имеющих разный топологический тип, т. е. имеет место ситуация, аналогичная спонтанному нарушению симметрий.

Выделение в расслоении λ нетривиального прямого слагаемого E требует, как уже отмечалось, перехода к атласам Ψ , являющимся при ограничении на Q^{e} и атласами E. При таком переходе в атласе Ψ возникает калибровочное поле A, которое при ограничении на E имеет нетривиальные топологические характеристики — когомологические классы образованных из A характеристических форм Чженя или Понтрягина, хотя связность A на λ топологически тривиальна, а в атласе Ψ^{0} может вообще отсутствовать.

Это подсказывает способ описания топологически нетривиальных связностей векторных расслоений E путем достраивания этих расслоений до тривиальных λ и представления такой связности A в градиентном виде $A = g^{-1}_i dg_i$ из элементов $g_i \in G(X)$ калибровочной группы расслоения λ . В частности, этот способ заманчиво применить для описания калибровочных дискретных симметрий, которые до сих пор не удавалось представить в привычном виде коэффициентов 1-формы связности [6].

СПИСОК ЛИТЕРАТУРЫ

[1] Квантовая теория калибровочных полей. Под ред. Н. П. Коноплевой. М.: Мир. 1977. [2] Едисhi Т., Gilkey P., Напson A. Phys. Rep., 1980, 66, N 6, р. 213. [3] Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. М.: Наука, 1981. [4] Зуланке Р., Винтген П. Дифференциальная геометрия и расслоения. М.: Мир, 1975. [5] Каруби М. К-теория. Введение. М.: Мир, 1981. [6] Сарданашвили Г. А. Вестн. Моск. ун-та. Физ. Астрон., 1981, 22, № 5, с. 41.

Поступила в редакцию 16.09.83

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 4

УДК 533.9.082

ВЛИЯНИЕ ИОНИЗАЦИИ НА ЗОНДОВЫЙ ТОК НАСЫЩЕНИЯ

А. М. Девятов, М. А. Мальков

,(кафедра электроники)

Как показал Бом [1], учет конечности радиуса зонда а по срависнию со средней длиной свободного пробега электронов λ приводит к уменьшению плотности электронного тока насыщения согласно зависимости

$$j \sim (1+\delta)^{-1}$$
,

68

где параметр стока $\delta = \frac{3}{4} \frac{a}{\lambda}$ для сферического и $\delta = \frac{3}{4} \frac{a}{\lambda} \ln \frac{l}{a}$ для цилиндрического зонда в случае $a/\lambda \gg 1$. Легко видеть, что при стремлении длины зонда *l* к бесконечности плотность тока стремится к нулю; это, как указывал Чен [2], связано с тем, что не учтены процессы ионизации в плазме. Влияние процессов ионизации и рекомбинации частиц в плазме на ионную часть ВАХ зонда рассматривалось, например, в [3, 4].

Рассмотрим задачу определения плотности электронного тока насыщения на цилиндрический зонд бесконечной длины, когда распределение частиц по радиусу описывается в рамках теории Шоттки уравнением

$$D_a \nabla^2 n + z_i n = 0 \tag{2}$$

с обычным в рамках этой теории граничным условием на стенках трубки n(R) = 0. Для простоты считаем, что оси зонда и трубки совпадают, призондовый слой — пролетный. Для зонда воспользуемся граничным условием $\frac{1}{n} \frac{dn}{dr} \Big|_{a} = \frac{3}{4\lambda}$ [5].

Для цилиндрической геометрии общее решение (2) с граничным условием n(R) = 0 есть $n(r) \sim N_0(\alpha R) J_0(\alpha r) - J_0(\alpha R) N_0(\alpha r)$, где $\alpha = \sqrt{z_i/D_a}$. Второе граничное условие дает для а уравнение

$$\frac{J_0(\alpha R)N_1(\alpha a) - N_0(\alpha R)J_1(\alpha a)}{N_0(\alpha R)J_0(\alpha a) - J_0(\alpha R)N_0(\alpha a)} = \frac{3}{4\alpha\lambda}.$$

Естественно ожидать, что в случае $R/a \gg 1$, когда зонд практически не искажает условий в плазме (ток на зонд много меньше тока на стенку), величина а близка к своему значению 2,4/R в отсутствие зонда. Будем поэтому искать решение для а в виде $a = (2,4+\Delta x)/R$, $\Delta x \ll 1$. Тогда для Δx имеем $\Delta x \simeq \frac{\pi}{2} \frac{N_0(2,4)}{J_1(2,4)} \left[\ln \left(\frac{R}{2,4a} \right) \right]^{-1}$. После подстановки найденного значения Δx в решение для распределения n(r) находим для плотности тока насыщения следующее выражение:

$$j \sim \left[1 + \frac{3}{4} \frac{a}{\lambda} \ln\left(\frac{1}{a} \sqrt{\frac{D_a}{z_i}}\right)\right]^{-1}.$$
 (3)

Таким образом, выражение (3) показывает, что для цилиндрического зонда бесконечной длины плотность тока является, естественно, конечной величиной. При этом в рамках решенной задачи параметр δ определяется, в противоположность (1), формулой $\delta = \frac{3}{4} \frac{a}{\lambda} \ln \frac{l_i}{a}$. Здесь $l_i = \sqrt{D_a/z_i} = R/2,4$ — длина ионизации. Поэтому при зондовых измерениях цилиндрическим зондом в условиях, когда следует учитывать сток электронов на зонд, необходимо выполнение требования $l_i \gg l$.

Действительно, вычисления, аналогичные проделанным выше для цилиндрического зонда, для сферического зонда в случае $R/a \gg 1$, т. е. когда размер зонда много меньше длины ионизации, дают для плотности тока

$$j \sim \left[1 + \frac{3}{4} \frac{a}{\lambda}\right]^{-1}, \qquad (4)$$

что совпадает с (1). (Отметим, что при этих вычислениях рассматривается плазма, ограниченная сферической полостью радиуса R, зонд считается расположенным в центре.) Рассмотрим безграничную плазму, описываемую уравнением $D_a \nabla^2 n + z_i n - \beta n^2 = 0,$ (5)

где последний член отвечает за рекомбинацию частиц в объеме плазмы. Коэффициент β определяется через z_i : $\beta = z_i/n_0$, при этом n_0 — концентрация частиц на бесконечности.

Для произвольной геометрии (5) можно записать в виде

$$\frac{\int d^2n}{dr^2} + \frac{\xi}{r} \frac{dn}{dr} + \alpha^2 n - \frac{\beta}{D_a} n^2 = 0, \qquad (6)$$

где $\xi = 1$ и 2 соответственно для цилиндрической и сферической геометрии. Решение (6) в общем виде не представляется возможным, однако можно показать, что концентрация электронов на границе зонда n(a)(точнее, на границе амбиполярной области [6]) при использовании <u>3</u> и условия dn 1 dn_ граничного условия $\rightarrow 0$ есть 4λ dr dr n 1 a

$$n(a) = n_0 \sqrt{1 + \frac{6\xi}{\alpha n_0^2} \int_0^\infty \frac{1}{r} \left(\frac{dn}{dr}\right)^2 dr} \left[\sqrt{3} \sqrt{1 + \left(\frac{3}{4\lambda}\right)^2 \frac{D_a}{z_i}}\right]^{-1}.$$
(7)

Результат (7) показывает, что независимо от формы зонда и отношения a/λ (в то время как, согласно (1), (3), (4), при $a/\lambda \rightarrow \infty$ имеем $j \rightarrow 0$) существует минимальная величина плотности тока, которая пропорциональна λ/l_i . Эта минимальная плотность тока соответствует случаю плоского зонда ($\xi=0$).

В заключение отметим, что наблюдавшееся, например, в [7] расхождение между значениями концентраций электронов, вычисленными по полному току через трубку и измеренными зондовым методом, объясняется, по-видимому, тем, что не учтены процессы ионизации в плазме.

СПИСОК ЛИТЕРАТУРЫ

[1] Ворт D. The characteristics of electrical discharges in magnetic fields. Ed. by A. Guthrie, R. K. Wakerling. N. Y., 1949. [2] Чен Ф. В кн.: Диагностика плазмы. Под ред. Р. Хаддлстоуна, С. Ленарда. М.: Мир, 1971, с. 117. [3] Ульянов К. Н. ЖТФ, 1970, 40, с. 790. [4] Бакшт Ф. Г. и др. ЖТФ, 1973, 43, с. 2574. [5] Грановский В. Л. Электрический ток в газе. М.: Наука, 1971. [6] Митчнер М., Кругер Ч. Частично иопизованные газы. М.: Мир, 1976, с. 152. [7] Каган Ю. М., Мустафин К. С. ЖТФ, 1960, 30, с. 938.

Поступила в редакцию 10.10.83

ВЕСТН. МОСК УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 4

УДК 537.611.44

МАГНИТОСТАТИЧЕСКИЕ ВОЛНЫ В ФЕРРИТОВОЙ ПЛАСТИНКЕ С ДОМЕННОЙ СТРУКТУРОЙ

С. А. Вызулин, С. А. Киров, Н. Е. Сырьев

(кафедра общей физики для физического факультета)

Перспективность использования в СВЧ-диапазоне устройств на основе магнитостатических волн (МСВ) в пластинках и пленках ферритов вызвала в последнее время возросший интерес к изучению физики МСВ при различных условиях: в многослойных структурах, в неоднородных намагничивающих полях и т. д. Одним из малоизученных остается пока случай МСВ при наличии доменной структуры (ДС). Он . представляет принципиальный интерес не только ввиду уменьшения