45 до 10 см. На рис. 2 приведены экспериментальные данные, полученные в разных сериях экспериментов. Они хорошо ложатся на прямые, описываемые соотношением (7). Это говорит о том, что использованный гидрофон удовлетворяет сформулированным выше требованиям линейности и равномерности частотной характеристики. Среднее значение чувствительности, определенное по различным сериям измерений, составило 0,18 \mp 0,02 мкВ/Па (для воды принималось значение ε =4,0).

1 OT MKC

Статистический разброс значений *k* был меньше ошибки метода, составлявшей 7% и определявшейся в основном точностью калибровки канала вертикального отклонения осциллографа.

Предлагаемый метод является разновидностью метода эталонной

Рис. 2. Изменение наклона прямолинейного участка профиля волны с расстоянием при различных уровнях накачки: U_{иэл} = =140 (×), 160 (▲) и 320 (●) В. Аппроксимационные прямые проведены с помощью метода наименьших квадратов

среды. Поэтому требования к акустическому полю достаточно низкие. Однако условие сравнимости расстояний проявления нелинейных и дифракционных эффектов не позволяет (при разумных значениях акустической мощности) проводить калибровку на частотах ниже 200 кГц. Поэтому предлагаемый метод является специфическим для мегагерцевого диапазона частот.

СПИСОК ЛИТЕРАТУРЫ

[1] Мощные ультразвуковые поля (под редакцией Л. Д. Розенберга). М.: Наука, 1968. [2] Труэлл Р., Эльбаум Ч., Чик Б. Ультразвуковые методы в физике твердого тела. М.: Мир, 1972. [3] Руденко О. В., Солуян С. И. Теоретические основы нелинейной акустики. М.: Наука, 1975.

Поступила в редакцию 24.01.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 4

УДК 538.971

О ДИФФЕРЕНЦИАЛЬНОМ СЕЧЕНИИ РАССЕЯНИЯ АТОМНЫХ ЧАСТИЦ Поверхностями твердых тел

В. В. Комаров, Д. Л. Маслов, А. М. Попова

(НИИЯФ)

Рассматривается рассеяние атомной частицы на N центрах, распределенных по поверхности твердого тела, при условиях: $\lambda \ll R$ и $R \gg a$, где λ — дебройлевская волна частицы, R — межцентровое расстояние, a — характерный радиус взаимодействия между падающей частицей и рассеивающим центром.

' Для решения этой задачи воспользуемся известным результатом Мотта и Месси [1], устанавливающим связь между сечениями рассеяния N центрами $(d\tau/d\Omega)_N$ и одним центром $(d\tau/d\Omega)_1$:

$$\left(\frac{d\sigma}{d\Omega}\right)_{N} = \left(\frac{d\sigma}{d\Omega}\right)_{1} \left(N + 2\sum_{i,j}^{N} \cos \mathbf{pr}_{ij}\right), \qquad (1)$$

где $\mathbf{p} = \mathbf{k}_0 - |\mathbf{k}_1, \mathbf{k}_0, \mathbf{k}_1 -$ импульсы частицы до и после столкновения соответственно (в атомных единицах); $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j, \mathbf{r}_i, \mathbf{r}_j$ — радиус-векторы *i*-го и *j*-го центров соответственно.

Рассмотрим случай расссяния аморфной поверхностью. Предположим, что взаимное расположение атомов на поверхности задается бинарной функцией распределения $B_1(\mathbf{r}_i, \mathbf{r}_j) = B_1(\mathbf{r}_i) B_1(\mathbf{r}_j) = 1/S^2$, где S площадь поверхности, а глубина шероховатости h имеет нормальный закон распределения с дисперсией σ . Усредняя (1) по положениям атомов на поверхности и учитывая, что

 $\int_{0}^{2\pi} \cos \left(x \cos \varphi \right) d\varphi = I_0(x),$ $\int_{0}^{2\pi} \sin \left(x \cos \varphi \right) d\varphi = 0,$

для $(d\tau/d\Omega)_N$, отнесенного к N аморфной поверхностью, получаем

$$\left(\frac{d\sigma}{d\Omega}\right)_{N}^{\text{am}} = \left(\frac{d\sigma}{d\Omega}\right)_{1} + \left(\frac{d\sigma}{d\Omega}\right)_{\text{RHT}},$$
(2)

где

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm HHT} = \frac{4\pi^2 n_s [J_1(k_0 \Phi L)]^2}{k_0^2 \Phi_1^2} \left(\frac{d\sigma}{d\Omega}\right)_1,\tag{3}$$

 $\Phi_1 = \sin \theta_0 + \sin (\theta + \theta_0); \theta, \theta_0$ — углы рассеяния и падения соответственно, $L = \gamma \overline{S}, n_s$ — поверхностная плотность атомов, $J_n(x)$ — функция Бесселя *n*-го порядка, P — фактор шероховатости, имеющий вид

$$P = \frac{1}{4} \exp\left(-\frac{\langle h \rangle^2}{2\sigma^2}\right) \{\exp A_1 \operatorname{erf} B_1 + \exp A_2 \operatorname{erf} B_3\},$$
$$A_{1,2} = \frac{\sigma^2}{2} \left(i\Phi_2 k_0 \pm \frac{\langle h \rangle}{\sigma^2}\right)^2,$$
$$B_{1,2} = \frac{\sigma}{\sqrt{2}} \left(i\Phi_2 k_0 \pm \frac{\langle h \rangle}{\sigma^2}\right),$$

erf (x) = $\frac{2}{V_{\pi}} \int_{0}^{t} e^{-t^2} dt$ — дополнительный интеграл вероятности, $\Phi_2 =$

 $=\cos\theta_0-\cos(\theta+\theta_0), \langle h \rangle$ — средняя глубина шероховатости.

Из (3) видно, что влияние всей поверхности на рассеяние, выражающееся в наличии интерференционной части сечения $(d\sigma/d\Omega)_{\rm инт}$ в (2), частично компенсируется за счет хаотического расположения поверхностных атомов (с увеличением площади поверхности $(d\sigma/d\Omega)_{\rm инт}$ осциллирует с амплитудой, убывающей как $1/\sqrt{S}$). С ростом энергии частицы влияние интерференционных эффектов ослабевает из-за уменьшения дебройлевской длины волны частицы λ , причем степень убывания $\lambda \sim 1/k_0$, а функции $(d\sigma/d\Omega)_{\rm инт} \sim 1/k_0^3$ [2]. Отметим, что с увеличением угла падения θ_0 , т. е. с увеличением эффективного времени взаимодействия частицы со всей поверхностью в целом, влияние эффекта интерференции на угловую зависимость сечения существенно возрастает: при $\theta_0 \ll 1$ (нормальное падение) $(d\sigma/d\Omega)_{\rm итн} \sim \sin^{-3}\theta$, а при $\theta_0 \rightarrow \pi/2$ (скользящее падение) $(d\sigma/d\Omega)_{\text{инт}} \sim \sin^{-5}\theta/2$. При $|\Phi_1| \ll 1$ (вектор расссяния параллелен поверхности) величиной $(d\sigma/d\Omega)_{\text{инт}}$ можно пренебречь по сравнению с $(d\sigma/d\Omega)_1$ во всем интервале энергий падающих частиц, например для протонов, начиная с 0,01 эВ и выше. При $|\Phi_1| \ll \ll 1$ (зеркальное отражение) $(d\sigma/d\Omega)_{\text{инт}}$ имеет резонансный характер и влияние интерференционных эффектов существенно.

Остановимся кратко на зависимости сечения рассеяния от тепловых колебаний поверхностных атомов. Влияние тепловых колебаний приводит к появлению в (1) фактора Дебая—Уоллера [3] (черта означает усреднение по времени):

$$I = \exp\left(-i\mathbf{p}\mathbf{u}_{mn}\right) = \exp\left(-(\mathbf{p}\mathbf{u}_{mn})^2\right) = \exp\left(-2H\right),\tag{4}$$

и_{тп}=и_т−и_п, и_ти_п − смещения из положений равновесия т-го и п-го узлов решетки соответственно. При выводе (4) существенно используется то, что вследствие равновероятности смещений имеет место ра- $(pu_{mn})^{2k+1} = 0, k = 0, 1, ...$ Однако в случае поверхноственство ного рассеяния это утверждение следует пересмотреть, так как колебания поверхностных атомов сильно анизотропны: u_1^2 в 2—5 раз больше $\overline{u_{\parallel}^2}$, где $\overline{u_{\perp}^2}$, $\overline{u_{\parallel}^2}$ — среднеквадратичные смещения по нормали и параллельно поверхности соответственно [3]. Уменьшение упругого силового поля вдоль нормали к поверхности приведет к тому, что члены вида $(p_{\perp}u_{\perp}mn)^{2k+1}$ будут отличны от нуля. Ограничиваясь вторым членом разложения экспоненты (4), сделаем грубую оценку влияния анизотропии поверхностных колебаний на величину фактора Дебая — Уоллера. Предположим, что равновесное положение поверхностного атома совпадает с границей раздела двух сред с различными постоянными квазиупругой силы β_1 и β_2 $\left(\omega_1^2 = \frac{\beta_1}{m}, \omega_2^2 = \frac{\beta_2}{m}\right)$, и частота колебаний зависит от времени следующим образом:

$$\omega = \begin{cases} \omega_1, & 0 \leqslant t \leqslant \frac{T}{2}, \\ \omega_2, & \frac{T}{2} \leqslant t \leqslant T, \end{cases}$$

где $T = \pi (1/\omega_1 + 1/\omega_2)$.

Рассмотрим пару атомов с индексами *т* и *п*. Предположим, что $u_{m_{\perp}} = A_{\perp} \sin(\omega t + \delta_{mn})$ и $u_{n_{\perp}} = A_{\perp} \sin \omega t$ (колебания не независимы, δ_{mn} — фиксированный фазовый сдвиг). Проводя усреднение по времени, получаем следующую оценку:

$$x = \overline{\rho_{\perp} u_{\perp mn}} \approx 2\sqrt{2} \pi A_{\perp} \frac{\omega_1 - \omega_2}{\omega_1 + \omega_2} \sin^2 \frac{\delta_{mn}}{2} \approx \frac{2\sqrt{2} \pi \sqrt{u_{\perp}^2}}{\beta} \left| \frac{d\beta}{dz} \right| \sin^2 \frac{\delta_{mn}}{2},$$
(5)

z — нормаль к поверхности. При выводе (5) предполагалось, что $|\omega_1 - \omega_2| \ll 1$ (слабая анизотропия). Таким образом, анизотропия поверхностных колебаний приводит к следующему результату (при $|pu_{mn}| \ll \ll 1$): exp ($-ipu_{mn}$) = exp (-2H) + $i(\exp(-X) - 1)$.

СПИСОК ЛИТЕРАТУРЫ

[1] Мотт Н., Месси Г. Теория атомных столкновений. М.: Мир, 1969, с. 187. [2] Иверонова В. И., Ревкевич Г. П. Теория рассеяния рентгеновских лучей. М.: Изд-во МГУ, 1978. [3] Нестеренко Б. А., Снитко О. В. Физико-химические свойства атомарно-чистой поверхности полупроводников. Киев, 1983.

Поступила в редакцию 13.02.84