230, с. 1077. [5] Кумахов М. А., Трикалинос Х. Г. ЖЭТФ, 1980, 78, с. 1624. [6] Базылев В. А. и др. ЖЭТФ, 1981, 80, с. 608. [7] Байер В. Н., Катков В. М., Страховенко В. М. ЖЭТФ, 1981, 80, с. 1348. [8] Кумахов М. А. УФН, 1975, 115, с. 427. [9] Schott G. A. Electromagnetik Radiation. Cambridge, 1912. [10] Соколов А. А., Тернов И. М. Релятивистский электрон. М.: Наука, 1974. [11] Ландау Л. Д., Лифшиц Е. М. Теория поля. М.: Наука, 1967.

Поступила в редакцию 04.04.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 5

УДК 551.515.2

турбулентные напряжения в модели природного вихря

И. А. Морозов, А. А. Соловьев

(кафедра молекулярной физики)

Измерений турбулентных характеристик атмосферных и океанических вихрей сравнительно мало. Поэтому при описании вихревых образований широко используются различные способы предвычисления турбулентных напряжений [1]. Они, как правило, основываются на гипотезе пути смешения. При сильной неравновесности и развитой турбулентности в вихревых течениях нарушаются линейные феноменологические соотношения переноса. Формально эти эффекты приводят к необходимости учета отрицательных значений коэффициента турбулентного обмена [2]. Априори неясно, каким образом и когда следует вносить поправки в феноменологические соотношения турбулентного переноса.

В ряде работ [3—6] предлагается следующий вариант замыкания уравнений Рейнольдса. В турбулентном переносе учитывается вклад не от градиентов осредненных скоростей, а от осредненных скоростей. До сих пор не проверялась гипотеза замыкания уравнений турбулентности, согласно которой в выражении для турбулентных напряжений одновременно учитываются как градиентная, так и конвективная со-

ставляющие переноса.

В данной работе указанная гипотеза проверяется экспериментально на лабораторной модели природного вихря, в которой ранее были замечены эффекты отрицательной турбулентной вязкости [7]. Конструкция вихревого генератора, использованного в работе, описана в [8]. В модели воздушного вихря с вертикальной осью высотой 0,21 м на уровне 0,205 м от нижнего конца измерялись турбулентные напряжения методом лазерной анемометрии [8].

Расчет турбулентных напряжений проводился по формуле, пред-

ложенной в [6]:

$$\overline{u'v'} = -\beta uv, \tag{1}$$

где β — некоторая эмпирическая константа.

Одновременно рассчитывались значения турбулентных напряжений по формуле

$$\overline{u'v'} = v_x \left(\frac{dv}{dr} - \frac{v}{r} \right), \tag{2}$$

где v_x — коэффициент горизонтальной турбулентности. В полуэмпирических моделях коэффициент турбулентной вязкости в вихрях вычис-

$$v_x = \frac{\kappa^2 r^3 \left(d\Omega/dr \right)^3}{\left(\frac{d}{dr} \left(r \frac{d\Omega}{dr} \right) \right)^2},\tag{3}$$

где и — число Кармана. Из данных, приведенных в таблице, видно, что расчет по формулам (2) и (3) дает значительное количественное

Удельный поток турбулентного импульса $\overline{u'}$	Удельный	поток	турбулентного	импульса	$\overline{u'v'}$
---	----------	-------	---------------	----------	-------------------

	и, м/с	υ, м/с	u'v', м²/c²				
r, M			Расчет по формулам				
			(2), (3)1	(2)2	(1)3	(4)4	Эксперимент авторов
0,02 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12	$\begin{array}{c c} -0,10 \\ -0,22 \\ -0,32 \\ -0,45 \\ -0,57 \\ -0,41 \\ -0,12 \\ 0,02 \\ 0,20 \\ 0,05 \\ \end{array}$	2,20 3,55 3,36 3,32 3,73 4,73 5,86 6,59 5,41 3,00	0 0,32 0,10 0,003 0,001 120,0 0,004 0,002 200,0 0,18	$\begin{matrix} 0 \\ -0.07 \\ -0.08 \\ -0.04 \\ 0.06 \\ 0.05 \\ -0.08 \\ -0.36 \\ -0.12 \end{matrix}$	0,02 0,07 0,10 0,13 0,19 0,17 0,06 -0,01 -0,10 -0,01	0,03 0,08 0,12 0,20 0,34 0,32 0,13 -0,06 -0,33 -0,05	0,03 0,06 0,14 0,23 0,35 0,30 0,12 -0,07 -0,34 -0,08

 $^{^{1} \}varkappa = 0,4.$

несоответствие с данными эксперимента в точках, где производная угловой скорости проходит через экстремум. Кроме того, рассчитанные напряжения не отражают опытного факта изменения знака турбулентных напряжений. Оценка турбулентного переноса по формуле (1) по сравнению с расчетом по формулам (2), (3) имеет следующее преимущество. Появляется возможность для учета особенностей переноса, связанных с переходом энергии от пульсаций в среднее движение. Как видно из четвертой колонки таблицы, параметр в в широком интервале расстояний от центра вихря действительно можно считать постоянным. Вообще говоря, существуют области, в пределах которых параметр в существенно непостоянен.

В рассмотренных приемах замыкания уравнений Рейнольдса для более хорошего согласия расчета с экспериментом в модель вихря необходимо вводить зависимость коэффициентов β и ν_x от радиуса. Эта зависимость не задается в рамках используемых гипотез. Поэтому без специальных экспериментов затруднительно подобрать функциональную зависимость параметров от радиуса.

Нами испытан вариант замыкания уравнений турбулентности, в котором турбулентные напряжения являются функцией как осредненных скоростей, так и градиента угловой скорости, т. е.

$$\overline{u'v'} = v \left(\frac{dv}{dr} - \frac{v}{r} \right) - \gamma uv, \tag{4}$$

где у и у — некоторые постоянные коэффициенты.

 $v_x = 1, 1 \cdot 10^{-3} \text{ M}^2/\text{c}$

 $^{^3 \}beta = 0.09.$ $^4 \gamma = 0.15, v = 6.0 \cdot 10^{-4} \text{ m}^2/\text{c}.$

и, v — осредненные значения радиальной и тангенциальной компонент скорости.

Как видно из таблицы, использование формулы (4) обеспечивает хорошее количественное согласие результатов расчета и эксперимента в исследуемой модели вихря. Преимуществом предлагаемого расчета турбулентных напряжений в вихре является независимость параметров у и у от координат.

В целом проведенный анализ позволяет заключить, что применение варианта замыкания уравнений турбулентности с использованием формулы (4) правильно отображает процессы переноса турбулентного импульса. В частности, что очень существенно, с хорошей точностью может быть описан эффект отрицательной турбулентной вязкости, замеченный в работе [10].

СПИСОК ЛИТЕРАТУРЫ

[1] Хаин А. П., Сутырин Г. Г. Тропические циклоны и их взаимодействие с океаном. Л.: Гидрометеоиздат, 1983. [2] Монин А. С., Озмидов Р. В. Океанская турбулентность. Л.: Гидрометеоиздат, 1981, с. 246—298. [3] Предводителев А. С. Изв. АН СССР, ОТН, 1948, № 4, с. 545. [4] Лыков А. В. Тепломассообмен. М.: Энергия, 1971, с. 51—63. [5] Вулис Л. А., Кашкаров В. П. Теория струй вязкой жидкости. М.: Наука, 1965. [6] Соловьев А. А. В кн.: История и методология естественных наук, физика, вып. 26. М.: Изд-во МГУ, 1981, с. 169—192. [7] Габдуллин И. З., Соловьев А. А., Солодухин А. Д. Изв. АН БССР, сер. физ.-энергет. наук, 1983, № 3, с. 54. [8] Баранов П. А., Соловьев А. А. Изв. АН СССР, ФАО, 1980, № 6, с. 656. [9] Deissler R. G. J. Atm. Sci., 1977, 34, р. 1502. [10] Старр В. П. Физика явлений с отрицательной вязкостью. М.: Мир, 1971.

Поступила в редакцию 29.02.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 15, № 5

УДК 539.12.04:162

СООТНОШЕНИЕ ДИСКРЕТНОСТЬ — ТЕПЛОВЫЕ КОЛЕБАНИЯ ПРИ ОСЕВОМ КАНАЛИРОВАНИИ

А. К. Ичева, А. Г. Кадменский, В. В. Самарин $(H \mathcal{U} \mathcal{H} \mathcal{\Phi})$

При описании движения частиц через монокристаллы в условиях осевого каналирования важной характеристикой является сечение рассеяния их рядами атомов, расположенных вдоль кристаллографических направлений [1]. Упругое рассеяние с сохранением энергии поперечного относительно оси ряда движения частицы (для краткости — поперечной энергии) описано в модели эффективного потенциала [1]. При этом основные факторы, вызывающие несохранение поперечной энергии: дискретность атомного ряда [1—3] и тепловое движение атомов кристалла [1, 4], — рассматривались раздельно.

В данной заметке мы обсудим соотношение между этими факторами по результатам численного моделирования на ЭВМ методом