ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1984, т. 25, № 6

УДК 537.311.322

О СВЯЗИ ЧЕТНОГО ФОТОМАГНИТНОГО ЭФФЕКТА С ФОТО-ХОЛЛ-ЭФФЕКТОМ

В. И. Николаев, Г. Н. Север, Т. В. Шилова

(кафедра общей физики для физического факультета)

Для определения подвижности носителей заряда в полупроводниковых материалах наряду с данными об эффекте Холла или фотохолл-эффекте (ФХ) в ряде случаев (особенно при биполярной проводимости) используется нечетный фотомагнитный эффект (ФМЭ) [1]. В настоящей работе показывается, что для тех же целей, что и ФХ, может быть использован также и четный ФМЭ. Возможность такого подхода к задаче связана с механизмом формирования четного ФМЭ: как было показано в [2] на примере *p*-Ge, одна из составляющих четного ФМЭ может быть интерпретирована как ЭДС ФХ, обусловленная валичием разности потенциалов нечетного ФМЭ.

Для сопоставления данных о четном $\Phi M \ni$ и ΦX необходимо рассмотреть их в одинаковых условиях наблюдения. Предположим, что одна из плоскостей образца освещается сильно поглощаемым светом, причем образец расположен в магнитном поле так, что вектор напряженности **H** составляет с освещаемой плоскостью угол $\alpha \neq 0$. Нечетный $\Phi M \ni$ измеряют в направлении, перпендикулярном градиенту концентрации носителей и проекции вектора **H** на плоскость образца, а четный — вдоль этой проекции. Для измерений ΦX используются контакты четного $\Phi M \ni$, а токовыми контактами служат контакты нечетного $\Phi M \ni$.

Будем считать, что форма образца и его размеры удовлетворяют обычным требованиям при измерении ФХ [3]. Для ЭДС ФХ справедлива тогда формула

$$V_{\Phi \mathbf{x}} = V \mu_H H \sin \alpha \, a/l, \tag{1}$$

где μ_H — фотохолловская подвижность, V — падение напряжения между контактами, расположенными на расстоянии l друг от друга вдоль направления тока через образец, a — ширина образца (расстояние между измерительными контактами четного ФМЭ). В том случае, когда в кинетическом уравнении можно пренебречь членами, пропорциональными полю H во второй и более высоких степенях, для фотохолловской подвижности имеем (ср., например, с [4])

$$\mu_{H} = \int_{0}^{a} (n\mu_{n}\mu_{nH} - p\mu_{p'}\mu_{p'H}) dx / \int_{0}^{a} (n\mu_{n} + p\mu_{p'}) dx. \qquad (2)$$

Здесь $n = n_0 + \Delta n$ и $p = p_0 + \Delta p$ — концентрации электронов и дырок, равновесных и неравновесных, μ_n и μ_{nH} — дрейфовая и холловская подвижности электронов, $\mu_{p'}$ и $\mu_{p'H}$ — соответствующие подвижности дырок (учитывающие наличие легких и тяжелых носителей [5, 6]), d — толщина образца.

Подчеркнем, что формула (2) для фотохолловской подвижности, определяющей величину ЭДС ФХ, оказывается такой же, как и формула для величины μ_H , определяющей одну из составляющих четного ФМЭ (см. формулы (4)—(6) в [5]). Это обстоятельство является до-

6 ВМУ, № 6, физика, астрономия

81

полнительным подтверждением интерпретации четного ФМЭ, данной в [2, 5]. Согласно [5],

$$\mu_{H} = (V_{\rm Hp} - V_{\rm H3}) l / (a V_{\rm HeH} H \sin \alpha), \qquad (3)$$

где $V_{\rm up}$ и $V_{\rm us}$ — ЭДС четного ФМЭ соответственно в режимах разомкнутой и замкнутой цепи нечетного эффекта, $V_{\rm nev}$ — ЭДС нечетного ФМЭ.

Информация о свойствах полупроводника, связанная с величиной µ_H, можот быть получена, таким образом, и в отсутствие данных о ФХ, если измерения нечетного ФМЭ дополнены измерениями четного ФМЭ.

Рис. 1. a — Зависимость произведения μ_H (1+ $\Delta G/G$) от $\Delta G/G$ для p= =Ge при 293 К: H=1 (1) и 16,1 (2) кЭ. δ — Полевая зависимость $\mu_{p'H}$ для p-Ge при 293 К: О — по данным ФХ и эффекта Холла (см. формулу (1)), Х — по данным ФМЭ (см. формулу (3)). На рис. 1, δ данные ФМЭ соответствуют низкому уровню инжекции, $\Delta G/G \sim 0,1$

Рис. 2. a — Зависимость произведения $\mu_H(1+\Delta G/G)$ от $\Delta G/G$ для *p*-Si при 293 К для H=16 кЭ. 6 — Полевая зависимость μ_H для *p*-Si при 293 К: $\Delta G/G=0.26$ (1) н 0.65 (2). О — по данным ФМЭ

(5)

Данные о μ_H можно использовать, например, для определения подвижности носителей. Если эти подвижности, а также величина $c = \Delta n / \Delta p$ одинаковы по толщине образца, величину μ_H удобно выразить через относительное изменение проводимости при освещении $\Delta G/G$. Для образца *p*-типа, например, получим

$$\mu_H = -(\mu_{p'H} - \mu_i \Delta G/G)/(1 + \Delta G/G), \qquad (4)$$

где μ_i — фотохолловская подвижность, соответствующая большому уровню инжекции ($\Delta G/G \gg 1$). При c=1 величина μ_i оказывается равной холловской подвижности для полупроводника с собственной проводимостью:

 $\mu_{i} = (\mu_{n}\mu_{nH} - \mu_{p'}\mu_{p'H})/(\mu_{n} + \mu_{p'}).$

Как видно из (4), по данным о зависимости ΦX от $\Delta G/G$ можно определить подвижности $\mu_{\rho'H}$ и μ_i , а значит, если известны отношения μ_{nH}/μ_n и $\mu_{\rho'H}/\mu_{p'}$, и подвижность μ_{nH} .

В связи с вопросом об отмеченной выше аналогии между четным ФМЭ (точнее — одной из его составляющих) и ФХ мы провели экспе-

82

риментальные исследования зависимости ФМЭ и ФХ от уровня инжекции носителей в одинаковых условиях опыта с целью сопоставления значений µ_H, получаемых двумя различными методами. Для измерений использовались образцы Ge и Si *p*-типа с удельным сопротивлением соответственно 29 и 13 Ом см.

Результаты измерений представлены на рис. 1 и 2 в виде зависимостей произведения μ_H (1+ $\Delta G/G$) от $\Delta G/G$. В обоих случаях, как для *p*-Ge, так и для *p*-Si, измерения ФМЭ дают те же результаты, что и ФХ. Эти данные являются прямым доказательством возможности использования ФМЭ, в том числе и четного, для тех же целей, для которых используется обычно ФХ.

Экспериментальные данные о зависимости $\mu_H(1+\Delta G/G)$ от $\Delta G/G$ были обработаны нами, в соответствии с уравнением (4), методом наименьших квадратов с целью получения подвижностей $\mu_{p'H}$ и μ_i . Значения этих величин, найденные по данным измерений ΦM Э и ΦX , хорошо согласуются между собой. Так, для *p*-Ge при H=16,1 кЭ два сравниваемых метода дают $\mu_{p'H}$ соответственно 2090 и 1980 см²/(B·c), $\mu_i - 1390$ и 1330 см²/(B·c), что соответствует литературным данным [6]; при H=1 кЭ $\mu_{p'H} - 3420$ и 3680 см²/(B·c), $\mu_i - 1130$ и 1220 см²/(B·c) [6]. Обращает на себя внимание различие подвижностей, найденных для различных значений поля *H*, особенно большое для $\mu_{p'H}$. Такое расхождение естественно связывать с полевой зависимостью подвижности легких дырок [7]. На существенную роль легких дырок непосредственно указывают и результаты измерений холловской подвижности для того же образца (см. рис. 1, 6).

Аналогичные результаты были получены и для *p*-Si: $\mu_{p'H}$ соответственно 360 и 355 см²/(B·c), $\mu_i - 920$ и 915 см²/(B·c). Если учесть, что отношение холл-факторов электронов и дырок в Si равно 1,6 [8], то с помощью формулы (5) можно определить подвижность μ_{nH} , которая, по данным о ФМЭ, оказывается равной 1420 см²/(B·c) [8, 9]. В опытах с *p*-Si не было замечено влияния поля *H* на подвижности как при низком, так и при высоком уровне инжекции (см. рис. 2, 6). Это связано с тем, что подвижности легких и тяжелых дырок в *p*-Si отли-чаются значительно меньше, чем в *p*-Ge.

Проведенные исследования показывают, таким образом, что физические причины, обусловливающие связь четного ФМЭ с ФХ, обеспечивают принципиальную возможность выбора любого из этих эффектов, в дополнение к нечетному ФМЭ, при изучении свойств полупроводниковых материалов.

СПИСОК ЛИТЕРАТУРЫ

6*

[1] Остробородова В. В., Рябова Л. И., Симакин М. И. ФТП, 1975, 9, с. 795. [2] Николаев В. И. и др. ФТП, 1980, 14, с. 1632. [3] Добровольский В. Н. ФТТ, 1962, 4, с. 329. [4] Vaitkus J. Phys. Stat. Sol. (a), 1976, 34, р. 769. [5] Николаев В. И., Север Г. Н. ФТП, 1976, 10, с. 468. [6] Willardson R. К., Нагтап Т. С., Веег А. С. Phys. Rev., 1954, 96, р. 1512. [7] Баран « ский П. И., Винецкий Р. М. ФТТ, 1962, 4, с. 289. [8] Реньян В. Р. Технология полупроводникового кремния. М.: Металлургия, 1969. [9] Электрофизические свойства германия и кремния. Под ред. А. В. Ржанова. М.: Сов. радно, 1956.

Поступила в редакцию 06.04.84