[1] Щукин Е. Д., Перпов А. В., Амелина Е. А. Коллоидная химия. М.: Изд-во МГУ, 1982, с. 5. [2] Левшин В. Л. Фотолюминесценция жидких и твердых веществ. М.-Л.: ГИТТЛ, 1951, с. 130—132. [3] Реггіп F. Acta Phys. Pol., 1936, 5, р. 335. [4] Шифрин К. С. Тр. гл. геофиз. обсерватории, 1955, вып. 46(108), с. 5. [5] Дейрменджан Д. Рассеяние электромагнитного излучения сферическими полидисперсными частицами. М.: Мир, 1971, с. 90. [6] Volmer М. Z. Phys. Chemie, 1957, В 206, N 3/4, р. 181. [7] Ребиндер П. А. Избранные труды. Поверхностные явления в дисперсных системах. Коллондная химия. М.: Наука, 1978, с. 62. [8] Бодан А. Н. Химия и технология топлив и масел, 1982, № 12, с. 22. [9] Ребиндер П. А. Избранные труды. Поверхностные явления в дисперсных системах. Коллоидная химия. М.: Наука, 1978, с. 297. [10] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. М., Наука, 1979, с. 484.

Поступила в редакцию 05.03.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985. т. 26. № 1

УДК 535.37

ИЗУЧЕНИЕ ПОВЕДЕНИЯ ЭЛЕКТРОННЫХ СПЕКТРОВ ПОГЛОЩЕНИЯ МНОГОАТОМНЫХ МОЛЕКУЛ В ЖИДКИХ РАСТВОРИТЕЛЯХ

В. М. Бойцов, В. И. Южаков

(кафедра общей физики для физического факультета)

В настоящее время для теоретического изучения и описания электронных спектров многоатомных молекул обычно пытаются получить решение уравнения Шрёдингера для исследуемой многоатомной системы. Окончательный результат удается получить для линии 0-0 перехода примесного центра кристалла [1] и для свободной молекулы [2, 3] с использованием моделей, значительно упрощающих задачу. Однако ни одна из теорий электронно-колебательных спектров многоатомных молекул и межмолекулярных взаимодействий не позволяет с достаточной степенью точности описывать поведение спектров красителей в различных растворителях. До настоящего времени также не получил количественного объяснения эффект изменения интегральной интенсивности поглощения многоатомных молекул в различных растворителях. При этом для выяснения механизмов формирования диффузных полос электронных спектров значительный интерес представляет определение полуширины их однородной релаксационной составляющей, что также остается нерешенным вопросом в большинстве случаев.

Для формы спектра изолированной молекулы при переходах между стационарными состояниями в рамках основной модели получено [4]

$$G(\mathbf{v}) = |\mu_0|^2 \sum_i W_i \delta(\mathbf{v}_0 + \mathbf{v}_{\mathbf{v}} i - \mathbf{v}),$$

где v — частота падающего излучения, μ_0 — электронный матричный элемент дипольного момента перехода, которым определяется вероятность перехода между двумя состояниями, W_i — вероятность электронно-колебательного перехода с изменением колебательного квантового числа *i*, v_0 — частота чисто электронного перехода, v_v — приведенная частота нормального колебания.

Вследствие электронно-колебательных релаксаций и конечного времени жизни каждый из уровней имеет некоторую конечную полуширину, а форма линии перехода между двумя электронно-колебательными состояниями является лоренцевой [5]. Причем феноменологически введенная константа релаксации вибронных уровней Г (полуширина однородной лоренцевой линии перехода) может зависеть как от номера перехода *i*, так и от частоты перехода $v_b = v_0 + v_v i$. В жидких растворах также может иметь место неоднородное конфигурационное уширение спектра растворителем с некоторым распределением $\psi(v_0)$. Тогда для спектра жидкого раствора можно записать

$$S(\mathbf{v}) = \int d\mathbf{v}_0 \psi(\mathbf{v}_0) |\mu_0|^2 \sum_i \frac{1}{\pi} \frac{\Gamma_i(\mathbf{v}_0 + \mathbf{v}_{\mathbf{v}}^i)}{(\mathbf{v} - \mathbf{v}_0 - \mathbf{v}_{\mathbf{v}}^i)^2 + \Gamma_i^2(\mathbf{v}_0 + \mathbf{v}_{\mathbf{v}}^i)} W_i.$$

Хотя Г может зависеть как от конкретных состояний, между которыми совершается переход, так и от частоты перехода, здесь могут быть различные ситуации. Так, измерения, выполненные в газах при температурах, близких к 0 К, не обнаружили зависимости Г ни от *i*, ни от v_s [6], в то время как измерения Г в жидком растворе при комнатной температуре [7] обнаружили ее зависимость от частоты. Предположим, что Г является функцией только частоты перехода системы $\Gamma(v_s)$. Известно, что квадрат электронного матричного элемента дипольного момента перехода $|\mu_0|^2$ также зависит от частоты перехода системы $|\mu_0(v_s)|^2$. При сделанном предположении для спектра поглощения многоатомной молекулы в жидком растворе можно записать

$$S(\mathbf{v}) = \int \frac{1}{\pi} \frac{\int \Gamma(\mathbf{v}_s)}{(\mathbf{v} - \mathbf{v}_s)^2 + \Gamma^2(\mathbf{v}_s)} | \mu_0(\mathbf{v}_s) |^2 \varphi(\mathbf{v}_s) d\mathbf{v}_s,$$

где

$$\varphi(\mathbf{v}_s) = \sum_i W_i \psi(\mathbf{v}_s - \mathbf{v}_v i).$$

Предположим, что распределение $\varphi(v_s)$, которое в дальнейшем будем называть распределением конфигурационного уширения спектра, для бесструктурных полос жидких растворов при $T \sim 300$ К является распределением Гаусса. Тогда запишем

$$S(\mathbf{v}, C, \mathbf{v}^{c}, \sigma) = \int \frac{1}{\pi} \frac{\Gamma(\mathbf{v}_{s})}{(\mathbf{v} - \mathbf{v}_{s})^{2} + \Gamma^{2}(\mathbf{v}_{s})} |\mu_{0}(\mathbf{v}_{s})|^{2} \frac{C}{\sqrt{2\pi}\sigma} \times \exp\left\{-\frac{1}{2}\left(\frac{\mathbf{v}^{c} - \mathbf{v}_{s}}{\sigma}\right)^{2}\right\} d\mathbf{v}_{s}, \qquad (1)$$

где v^c и σ — центр и дисперсия распределения Гаусса, С — коэффициент.

параметры спектров поглощения ацетона в различных растворите.	lараметры спект	в поглощения	ацетона в	различных	растворителя
---	-----------------	--------------	-----------	-----------	--------------

Растворитель	v _{max}	ð	v ^c	σ
Вода Этиловый спирт Метиловый спирт Бутиловый спирт Изо-пропиловый спирт 1,4-диоксан Гексан Сексан Сектан	37,7 36,8 36,7 36,9 36,7 36,3 36,0 35,8 37,1	5,85 6,36 6,12 6,09 6,04 5,79 6,22 6,32 6,30 5,87	37,56 36,57 36,55 36,70 36,54 36,12 35,80 35,76 35,66 36,94	$\begin{array}{c} 2,16\\ 2,45\\ 2,39\\ 2,40\\ 2,29\\ 2,28\\ 2,46\\ 2,52\\ 2,34\\ 2,34\\ 2,34\\ \end{array}$

Значения v_{max} , б, v^c и о представлены в 10³ см⁻¹.

Используя выражение (1) для бесструктурных спектров поглощения многоатомных молекул в жидких растворах, мы провели анализ спектров ацетона, которые представляют собой диффузные полосы. Спектры поглощения ацетона в различных раствори-(см. таблицу) измеряли на телях спектрофотометре «Beckman model 25». Концентрация ацетона во всех ра-2,34 · 10¹⁹ см⁻³ створителях была $(3, 89 \cdot 10^{-5})$ моль/л), что исключало проявление концентрационных эффек-TOB. Измерения проводили при

Рис. 1. Сплошные кривые — нормированные по максимуму спектры поглощения ацетона в октане (1), метаноле (2) и воде (3). Крестики — рассчитанные точки спектров. Штрихпунктир — однородные (релаксационные) лоренцевы составляющие спектров

T=297 К. Некоторые из нормированных спектров представлены на рис. 1.

Параметры C, v° и σ в выражении (1) для спектров в различных растворителях определяли с помощью метода наименьших квадратов путем минимизации функции

$$F(C, \mathbf{v}^{c}, \mathbf{\sigma}) = \sum_{j=1}^{k} [I(\mathbf{v}_{j}) - S(\mathbf{v}_{j}, C, \mathbf{v}^{c}, \mathbf{\sigma})]^{2},$$

где k — число точек экспериментального спектра I(v).

Для исследованных спектров поглощения ацетона подбором были найдены функции (v_s и $\Gamma(v_s)$ выражены в 10³ см⁻¹):

$$\begin{split} |\mu_{0}(\mathbf{v}_{s})|^{2} &= 10^{-26} \cdot \begin{cases} 3,259 \cdot 10^{-2} \cdot \mathbf{v}_{s} - 0,9102, & \mathbf{v}_{s} \leqslant 35, \\ 8,073 \cdot 10^{-3} \cdot \mathbf{v}_{s}^{2} - 0,535 \cdot \mathbf{v}_{s} + 9,05; & 35 \leqslant \mathbf{v}_{s} \leqslant 39, \\ 9,568 \cdot 10^{-2} \cdot \mathbf{v}_{s} - 3,25, & 39 \leqslant \mathbf{v}_{s}, \end{cases} \\ \Gamma(\mathbf{v}_{s}) &= \begin{cases} 1,821 \cdot 10^{-2} \cdot \mathbf{v}_{s} - 0,491, & \mathbf{v}_{s} \leqslant |34, \\ 1,589 \cdot 10^{-2} \cdot \mathbf{v}_{s}^{2} - 1,008 \cdot \mathbf{v}_{s} + 16,01, & 34 \leqslant \mathbf{v}_{s} \leqslant 39, \\ 1,845 \cdot 10^{-1} \cdot \mathbf{v}_{s} - 6,31, & 39 \leqslant \mathbf{v}_{s} \end{cases}$$
(26)

такие, что для всех исследованных спектров в минимуме $F(C, v^c, \sigma)$ параметр, характеризующий совпадение выражения (1) с экспериментальным спектром I(v),

$$f = \sqrt{\frac{F(C, v^c, \sigma)}{k}} \frac{1}{I_{\max}} < 0,01,$$
 (3)

что не превышает погрешности измерения спектров. Для всех исследованных спектров минимум $F(C, v^c, \sigma)$ достигался при $C = (2,34 \pm 0,017) \cdot 10^{19}$ см⁻³, что с точностью до погрешности измерений и вычислений равно концентрации исследуемых молекул. Все вычисления проводились на ЭВМ.

123

Полученные результаты ((3) и (C = const)) свидетельствуют о том, что выражение (1), при найденных нами функциях $|\mu_0(v_s)|^2$ (2a) и $\Gamma(v_s)$ (26), которые не зависят от растворителя, с точностью до погрешности измерений описывает как контуры полос, так и изменения

Рис. 2. Значения интегральной интенсивности поглощения ацетона в различных растворителях в зависимости от положения максимума спектров

Рис. 3. Рассчитанные функции $|\mu(v_s)|^2$ (1) и $\Gamma(v_s)$ (2)

интенсивности поглощения ацетона в различных растворителях. При этом от растворителя зависят параметры v^c и σ распределения конфигурационного уширения спектра $\varphi(v_s)$, которые представлены в таблице. Об изменениях интенсивности поглощения ацетона в различных растворителях можно судить по рис. 2, на котором представлены значения интегральной интенсивности поглощения в зависимости от положения максимума полосы. Точки нормированных по максимуму спектров, рассчитанных по (1), и однородные лоренцевы составляющие двух спектров приведены на рис. 1, а рассчитанные функции $|\mu_0(v_s)|^2$ (2а) и $\Gamma(v_s)$ (2б) — на рис. 3.

Таким образом, с помощью двух предположений относительно зависимости однородной составляющей спектров $\Gamma(v_s)$ и распределения конфигурационного уширения $\varphi(v_s)$ удалось с точностью до погрешности измерения описать как контуры бесструктурных полос, так и изменения интенсивности поглощения ацетона в различных растворителях. При этом определена полуширина однородной лоренцевой составляющей спектров $\Gamma(v_s)$, которая определяется скоростью электронно-колебательных релаксаций.

Отметим, что если выражение (1) описывает как контуры полос, так и интенсивности поглощения некоторой молекулы в большом числе различных растворителей, то можно построить систему уравнений, решением которой являются найденные нами функции $\varphi(v_s)$, $|\mu_0(v_s)|^2$ и $\Gamma(v_s)$.

Пусть имеется набор из N нормированных по максимуму бесструктурных полос поглощения некоторой молекулы в N различных растворителях, а также N значений интегральной интенсивности поглощения G(i) и N значений ширин спектров $\delta(i)$ в этих же растворителях. Тогда для формы полосы в *i*-м растворителе можно записать

$$\frac{I_{i}(v)}{I_{0i}} = \frac{1}{S_{0i}} \int \frac{\Gamma(v_{s})}{(v - v_{s})^{2} + \Gamma^{2}(v_{s})} |\mu_{0}(v_{s})|^{2} \varphi_{i}(v_{s}) dv_{s} \equiv \frac{S(v, |\mu_{0}|^{2}, \Gamma, \varphi_{i})}{S_{0i}}, (4a)$$

где I_{0i} и S_{0i} — интенсивности в максимуме экспериментального и расчетного спектров; для интегральной интенсивности поглощения в зависимости от растворителя запишем

$$G(i) = \int S(v, |\mu_0|^2, \Gamma, \varphi_i) dv,$$
 (46)

и для ширины полосы, которая зависит от функций $\Gamma(v_s)$, $|\mu_0(v_s)|^2$ и $\phi(v_s)$, —

$$\delta(i) = \Delta(|\mu_0|^2, \Gamma, \varphi_i). \tag{4B}$$

То есть имеем систему из N+2 уравнений (N интегральных уравнений (4a), а также уравнения (4б, в)), левые части которых являются экспериментально измеренными функциями, и N+2 неизвестные функции (N распределений $\phi_i(v_s)$, а также функции $|\mu_0(v_s)|^2 \ \pi \Gamma(v_s)$).

Мы не рассматриваем вопрос о единственности решения системы уравнений (4), хотя известно, что задачи типа уравнения (4а) не имеют корректного однозначного решения [8]. Полученное решение может быть проверено экспериментально путем сравнения значений найденной функции Г (vs) со значениями однородной полуширины, измеренной другими методами. В литературе отсутствуют данные о полуширине релаксационных лоренцевых составляющих спектров поглощения ацетона. Однако экстраполяция к Т=300 К температурных зависимостей полуширин однородных лоренцевых линий 0-0 и 0-1 переходов твердых растворов H2-тетра-4-трет-бутилфталоцианина, полученных методом выжигания провалов, дает значения $\Gamma=315~{
m cm}^{-1}$ для 0—0 перехода [9] и $\Gamma = 490$ см⁻¹ для 0—1 перехода [10]. Измерения различными методами времен релаксации и Г в спектрах поглощения жидких растворов при $T \sim 300$ K дают значения т \sim $\sim 2 \div 4 \cdot 10^{-14}$ с для 1,1'-диэтил-4,4'-хиноцианин йодида [7], что соответствует $\Gamma \sim 65 \div 130$ см⁻¹, $\tau \simeq 3 \cdot 10^{-14}$ с ($\Gamma \simeq 90$ см⁻¹) для родамина Б [11], Г=350 см⁻¹ для β-каротина [12] и Г=450 см⁻¹ для ликопена [13]. Эти значения Г, полученные различными методами, согласуются с найденным нами решением для $\Gamma(v_s)$ (см. рис. 3), что указывает на адекватность принятой модели процессам, происходящим в жидких растворах многоатомных молекул при электронно-колебательных переходах.

Из предложенной модели вытекают следующие выводы. Обычно считают, что асимметрия электронно-колебательных спектров является следствием асимметрии распределения вероятности перехода молекулы с изменением совокупности колебательных квантовых чисел Wi (фактор Франка-Кондона). Однако, как здесь показано, к асимметрии диффузных бесструктурных полос приводят частотная зависимость $|\mu_0(v_s)|^2$ и $\Gamma(v_s)$, а также наличие конфигурационного уширения спектра, хотя распределение такого уширения $\varphi(v_s)$, в которое входит и фактор Франка-Кондона, симметрично (распределение Гаусса). Зависимость $|\mu_0(v_s)|^2$ и $\Gamma(v_s)$ от частоты перехода системы также приводит к тому, что положение максимума полосы vmax не совпадает с центром распределения конфигурационного уширения v^c (см. таблицу), поэтому при изучении межмолекулярных взаимодействий можно рассматривать не v_{max} , а v^c . Параметр σ также может быть использован для изучения межмолекулярных взаимодействий, так как он зависит от растворителя.

Таким образом, предложенное рассмотрение позволяет количественно описать бесструктурные полосы поглощения в различных растворителях и выделить их однородную (релаксационную) составляющую.

СПИСОК ЛИТЕРАТУРЫ

[1] Ребане К. К. Элементарная теория колебательной структуры спектров примесных центров кристаллов. М.: Наука, 1968. [2] Мазуренко Ю. Т., Смирнов В. А. Опт. и спектр., 1978, 45, с. 23; 1979, 47, с. 471. [3] Непорент Б. С., Файнберг Б. Д. Опт. и спектр., 1982, 52, с. 820. [4] Франк-Каменецкий М. Д., Лукашин А. В. УФН, 1975, 116, № 2, с. 193. [5] Віхоп М., Jortner J. J. Chem. Phys., 1968, 48, р. 715. [6] Еven U., Jortner J. J. Chem. Phys., 1982, 78, р. 4391. [7] Yajima T., Souma H., Ishida Yu. Phys. Rev., 1978, A17, р. 324. [8] Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. [9] Gorokhovskii А. А., Rebane L. A. Opt. Comm., 1977, 20, р. 144. [10] Гороховский А. А., Ребане Л. А. ФТТ, 1977, 19, с. 3417. [11] Souma H., Yajima T., Taira Yo. J. Phys. Soc. Jap., 1980, 48, р. 2040. [12] Lukashin A. V., Frank-Kamenetskii M. D. Chem. Phys., 1978, 35, р. 469. [13] Hoskins L. S. J. Chem. Phys., 1981, 74, N 2, p. 882.

Поступила в редакцию 14.03.84