УДК 621.315.592

ВЛИЯНИЕ МОЛЕКУЛЯРНО-НАСЛОЕННЫХ ОКИСНЫХ СЛОЕВ НА ЛЮМИНЕСЦЕНЦИЮ АДСОРБИРОВАННЫХ МОЛЕКУЛ ЭРИТРОЗИНА В СИСТЕМЕ, ПОЛУПРОВОДНИК — ДИЭЛЕКТРИК

В. А. Беспалов, В. Е. Дрозд, Л. В. Левшин, Г. С. Плотников, А. М. Салецкий, В. И. Южаков

(кафедра общей физики для химического факультета; кафедра общей физики для физического факультета)

Ранее было показано, что фотовозбужденные адсорбированные на поверхности германия молекулы эритрозина могут стимулировать электронные переходы между глубокими лфвушками диэлектрика (ЛД) и объемом полупроводника [1]. При этом фиксировалось тушение люминесценции адсорбированных молекул эритрозина, обусловленное появлением дополнительного канала диссипации энергии BO3~ буждения в твердое тело [2]. Эффективность опустошения ловушек должна зависеть как от их природы, так и от структуры и состава слоя диэлектрика, отделяющего ловушки от молекул красителя. Поэтому представлялось интересным исследовать влияние обеих этих зависимостей в системах полупроводник — собственный окисел, а также в болес сложных структурах с дополнительным окисным слоем на поверхности, полученным методом молекулярного наслаивания [3]. Структуры такого типа в настоящее время широко применяются при создании различных полупроводниковых приборов и солнечных батарей.

Изменение структуры собственного окисла достигалось регулированием условий окисления Ge. При термическом и анодном окислении получались аморфные окислы. Окислы, полученные окислением в азотной кислоте, а также окисные пленки на реальной поверхности Ge после травления в перекисном травителе имели поликристаллическую гексагональную структуру. Данные о толщине полученных окисных пленок приведены в табл. 1. В качестве дополнительных окисных

Таблица 1

Вид окисла	Толщина окисла	Δ1/ΔQ, усл. ед.	$\Delta I/.$	0	₩, 3B	$\Delta Q/Q_0$	Q ₀ <u>эл. зар.</u> см ²
1. Гексагональный	30—50 Å	0,5	0,		2,9	0,2	5.1010
2. Термический аморфный	50 Å	0,80,66	0,	ŧ.	2,2	0,5-0,6	3.1011
3. Гексагональный, полученный окислением в азотной кислоте	100 Å	-	<0,		3,0	<0,1	6.10 ¹⁰
 Аморфный, полученный анод- ным окислением 	100 Å	0,75—0,6	0,	3	2,0	0,4-0,5	4.1011

Δ1/1₀ определено при значении Q₀ ~ 5·10¹⁰ эл. зар./см². Пороги опгического заряжения W определялись при температуре 300 K.

слоев в структурах Ge—GeO₂—MO, где MO — окисел переходного металла M, использовались наиболее перспективные в прикладном отношении химически стойкие окислы: Cr₂O₃, ZrO₂, HfO₂, Nb₂O₅. Поскольку эффект фотоопустошения ловушек можно, в принципе, использовать при создании новых оптоэлектронных устройств, немаловажно и то, что большинство из этих окислов может использоваться как пассивирующие и просветляющие покрытия одновременно. Молекулярное насланвание окислов осуществлялось на поверхности монокристаллов германия *n*-типа ($\rho \sim 30$ Ом · см), полированного по II классу чистоты и травленному в перекисном травителе. Толщина окисных пленок Cr₂O₃ составляла 30, 50, 80, 120 и 200Å, остальные окислы имели толщину порядка 30—50 Å.

Адсорбция молекул эритрозина осуществлялась из спиртовых растворов с концентрацией 10⁻³ моль/л. Полная концентрация адсорбированных молекул эритрозина, оцененная методом кварцевых весов, составляла 5.10¹³ моль/см². Изменение заряда глубоких ловушек диэлектрика (ЛД) фиксировалось методом эффекта поля на большом синусоидальном сигнале, как и в работе [2]. Спектры флуоресценции снимались на спектрофлуориметре MPF-4 фирмы Hitachi.

Рассмотрим сначала влияние структуры собственного окисла Ge на эффекты фотоопустошения ловушек и тушения люминесценции в системе Ge—GeO₂. Предварительно образцы облучались светом с энергией квантов $hv_{sap} > W$, где W — величина порога оптического заряжения; это приводило к заряжению ЛД до величины заряда Q_0 — переход 1 на рис. 1. Как известно, величина W зависит от протяжен-

ности хвостов локализованных состояний флуктуационной природы у краев запрещенной зоны неупорядоченных диэлектриков, какими являются окисные пленки GeO₂. Согласно теории неупорядоченных систем, протяженность хвостов \mathcal{L}_{cs} $\Delta W_{cd} (\Delta W_{vd})$ определяет степень разупорядочения структуры окисла. Величина \mathcal{L}_{vs} ответственно порог W минимален в случае аморфных окисных слоев (см. табл. 1).

Затем измерялось относительное изменение заряда ловушек $\Delta Q/Q_0$ и соответственно тушение люминесценции $\Delta I/I/I_0$, где I_0 — интенсивность флуоресценции красителя на незаряженном образце, при освещении структур в полосе поглощения эритрозина hv_3 . Разрядка ловушек фиксировалась при пониженной

вушек фиксировалась при пониженной температуре 220 К в условиях, когда hv меньше W. Как видно из табл. 1, паблюдалась прямая корреляция между величинами $\Delta Q/Q_0$ и $\Delta I/I_0$. Сравнительно небольшой диапазон изменения величины $\Delta I/\Delta Q$ (которая пропорциональна квантовому выходу фотоопустошения ловушек) по сравнению с эффективностью фотоопустошения $\Delta Q/Q_0$ (см. табл. 1) говорит о том, что механизм тушения люминесценции был для всех рассмотренных в них систем одинаковым и обусловленным переносом энергии от возбужденных молекул красителя к заряженным электронным ловушкам. Заметное увеличение эффективности фоторазрядки $\Delta Q/Q_0$ для систем с аморфными окислами по сравнению с поликристаллическими (см. табл. 1), в принципе, может быть обусловлено следующими причинами: 1) увеличением вероятности переноса выброшенных из ловушек электронов к объему полупроводника через более плотную систему флуктуационных состояний у края зоны проводимости — переход 3 на рис. 1; 2) ростом вероятности переноса энергии

Рис. 1. Зонная диаграмма структуры Ge—GeO₂ — окисел переходного металла (МО)

возбуждения молекул к электронам ловушек диэлектрика из-за уширения энергетического спектра глубоких ловушек.

С целью определения того, какой вклад вносит увеличение плотности флуктуационных состояний, были исследованы температурные зависимости эффективности фотоопустошения ПД. Мы не обнаружили заметного изменения величины $\Delta Q/Q_0$ в использованном диапазоне температуры (220—300 К). Поэтому вклад в процесс фоторазрядки переноса через локализованные состояния, который зависит от температуры [4], незначителен. Следовательно, выброс электрона в результате поглощения энергии от фотовозбужденных молекул красителя осуществляется, как в случае прямых оптических переходов в зону делокализованных состояний GeO₂.

Объяснить столь большое, в несколько раз (см. табл. 1), изменение эффективности фотоопустошения уширением энергетического спектра глубоких ловушек в аморфном окисле (причина 2) также невозможно. При разунорядочении структуры GeO₂ уширение спектра ловушек находится в пределах 10—15% [5].

По-видимому, основная причина увеличения эффективности $\Delta Q/Q_0$ в нашем случае состоит в том, что перестройка центров захвата при их опустошении в аморфных структурах легче, чем в поликристаллических. Энергия перестройки в этом случае соответствует разности между оптической и термической энергиями активации ловушек и зависит от константы электрон-фотонного взаимодействия [6].

Далее, мы исследовали влияние состава более сложных диэлектрических слоев на фоторазрядку различных по природе ловушек в структурах Ge—GeO₂—MO. Из сравнения табл. 1 и 2 видно, что ве-

Таблица 2

_						
Окислы	Q ₀ , <u>эл. зар.</u> см ²	<i>H</i> ₀ , <u>ккал</u> моль	∆ <i>1/∆Q,</i> усл. ед.	J	$\Delta I/I_0$	$\Delta Q/Q_0$
$\begin{array}{c} HfO_2\\ ZrO_2\\ Cr_2O_3\\ TiO_2\\ Nb_2O_5 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	≥200 200 200 105 102	$\begin{array}{ c c c } 4 \\ 1,7 \\ \hline 3 \\ 4,1 \end{array}$	65 63 61 54 52	$ \begin{array}{ c c c } 0,12\\0,05\\0,00\\0,1\\0,14\\\end{array} $	0,03 0,63 0,02 0,03 0,025
· · · · · · · · · · · · · · · · · · ·						

 H_0 — энтальпия образования кислородных вакансий, J — ионность связи М—О в кристалле. Ионность Ge—O-связи ~45. $\Delta I/I_0$ определено при значении $[Q_0] = 2 \cdot 10^{14}$ эл. зар./см².

личина заряженных ловушек диэлектрика Q_0 в структурах с дополнительными окислами была примерно на порядок выше, чем для собственного окисла на реальной поверхности, что указывает на резкое увеличение числа дефектов в этом случае. Поэтому при изучении процесса фоторазрядки ловушек в системах Ge—GeO₂—MO перезарядкой ловушек GeO₂ можно пренебречь. На рис. 1 приведена зонная диаграмма таких структур. Во всех случаях ширина запрещенной зоны MO была меньше, чем в GeO₂. Облучение квантами света с энергией $hv_{3ap} > W_1$ приводило к отрицательному заряжению ловушек MO переход 2 на рис. 1, а при $hv_{23ap} > W_2$ па поверхности начинал накапливаться положительный заряд — переход 3 на рис. 1.

В работе [7] показано, что отрицательное оптическое заряжение в таких системах обусловлено главным образом дефектами на границе раздела GeO₂—MO, а положительное — перезарядкой кислородных вакансий в слое МО. На образцах с окислами Cr_2O_3 , HfO₂, ZrO₂ преобладало отрицательное заряжение ловушек, а в структурах с окислами Nb₂O₅, TiO₂ — положительное (см. табл. 2). Это можно объяснить тем, что в окислах первой группы ионность связи МО (*J*) сильно отличается от значения *J*, характерного для Ge—O связи, соответственно много дефектов расстыковки на межфазной границе; с другой стороны, энтальпия образования кислородных вакансий *H* велика и число вакансий, а соответственно и положительное заряжение, незначительно. В окислах второй группы реализуется обратная ситуация (см. табл. 2).

Параллельно с заряжением поверхности структур Ge-GeO₂-MO мы исследовали люминесценцию адсорбированных на поверхности молекул эритрозина. Из рис. 2 видно, что интенсивность люминесценции существенно падает с увеличением заряда ЛД. Это связано с безызлучательным переносом энергии возбуждения от адсорбированных молекул к ловушкам окисла и опустошением последних [2]. Как и следовало ожидать, эффективность этого процесса пропорциональна числу заряженных ЛД — акцепторов энергии, что и реализуется в данном случае (см. рис. 2). Заметим, что тушение люминесценции про-

Рис. 2. Изменение относительного квантового выхода люминесценции от заряда ловушек диэлектрического слоя в системе с окислами Cr_2O_3 (1), ZrO_2 (2), HfO_2 (3), Nb_2O_5 (4), TiO_2 (5)

Рис. 3. Изменение относительного квантового выхода люминесценции в системе Ge-GeO₂-Cr₂O₃ - эритрозин в зависимости от толщины слоя Cr₂O₃

исходит как при фотоопустошении отрицательно заряженных ловушек (Cr₂O₃, HfO₂, ZrO₂), так и при разрядке кислородных вакансий (Nb₂O₅, TiO₂), хотя эффективности этих процессов для разных окислов существенно отличаются (см. рис. 2). В отличие от структур с собственным окислом (Ge-GeO₂), где имелась прямая пропорциональность между тушением люминесценции $\Delta I/I_0$ и эффективностью фотоопустошения, $\Delta Q/Q_0$ и соответственно квантовый выход этого процесса менялись незначительно (см. табл. 1); ситуация в системе Ge-GeO2-MO более сложная. Как следует из табл. 2, величина эффективности фотовыброса, т. е. $\Delta Q/Q_0$, в этих структурах значительно ниже, чем в случае Ge-GeO2 и сильно зависит от возможности миграции выброшенных из ловушек носителей к объему полупроводника. Из-за наличия потенциального барьера на границе между GeO2 и молекулярно-наслоенным окислом условия миграции в случае разных МО отличаются. Выброшенные из ловушек носители могут рассеиваться на этом барьере и вторично локализоваться на глубоких ловушках

59

МО и GeO₂. Поэтому наблюдаются малые изменения заряда ловушек. $\Delta Q/Q_0$. В этом случае квантовый выход фотовыброса $\Delta I/\Delta Q$ не может определять механизм тушения флуоресценции, а величина $\Delta Q/Q_0$ эффективность процесса фоторазрядки. Более информативна величина: изменения относительной интенсивности люминесценции $\Delta I/I_0$. При данном значении заряда Q_0 она позволяет судить о процессе фотоопустошения ловушек диэлектрика в таких сложных системах. Причем этот способ является значительно более чувствительным, чем электрофизические измерения.

В рассмотренных выше системах толщины наносимых дополнительно окисных слоев были одинаковыми. Мы также изучали вопрос овлиянии толщин прослойки МО на эффект тушения люминесценции для структуры Ge—GeO₂—Cr₂O₃ — краситель. Как было отмечено. отрицательное фотозаряжение в этом случае обусловлено перезарядкой дефектов на межфазной границе GeO₂—Gr₂O₃. Поэтому перезаряжающиеся ЛД отделены от внешней поверхности слоем достаточнокачественного окисла Cr₂O₃, что исключает непосредственный электронный обмен между фотовозбужденными молекулами красителя и дефектами границы раздела. Следовательно, наблюдаемое при освещении в полосе красителя взаимодействие между адмолекулами и электронами, локализованными на дефектах, связано с переносом энергии возбуждения. Как видно из рис. 3, перенос | энергии прекращается, когда слой окисла Cr₂O₃ составляет 120 А. Такие значения критического радиуса переноса энергии R_{кр} характерны для переноса энергии в твердых телах по индуктивно-резонансному механизму [8].

Выше отмечалось, что тушение люминесценции $\Delta I/I_0$ в системах Ge-GeO2-MO было различно, соответственно и эффективность фотовыброса, о которой в таких системах можно судить по люминесценции, также отличалась для систем с разными окисными слоями МО. Здесь обнаруживается некоторая корреляция между нестехиометричностью межфазной границы, определяемой, в частности, величиной разности (J_{M-O}—J_{Ge-O}) и эффективностью фоторазрядки для отрицательных ловушек (табл. 2), и дефектностью слоя МО и соответственно разрядкой положительных ловушек. Увеличение эффективности. фоторазрядки в том случае, когда окружение глубоких ловушек является более разупорядоченным, может быть связано, как и для систем Ge—GeO₂, с уменьшением энергии перестройки центра в процессефоторазрядки.

В заключение авторы выражают глубокую благодарность проф. В. Ф. Киселеву за интерес к работе и полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

[1] Киселев В. Ф., Козлов С. Н., Плотников Г. С. Письма в ЖТФ. 1981, 7, с. 937. [2] Плотников Г. С., Салецкий А. М., Винденц С. В. Поверхность. Физика, химия, механика, 1982, № 11, с. 71. [3] Алесковский В. Б. Стехнометрия и синтез твердых соединений. М.: Наука, 1976. [4] Кашкаров П. К., Козлов С. Н., Петров А. В. Изв. вузов. Физика, 1982, № 5, с. 36. [5] Забо-

€0

тин О. М., Козлов С. Н., Плотников Г. С. Микроэлектроника, 1977, 6, с. 359. [6] Кözter Н. Phys. Stat. Sol. (b), 1983, 115, р. 409. [7] Дрозд В. Е., Козлов С. Н., Плотников Г. С. Деп. ВИНИТИ, № 2661-80. М., 1980. [8] Rosseti R., Brus L. J. Chem. Phys., 1980, 73, N 1, р. 572.

Поступила в редакцию 04.04.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 2

УДК 535.8:543.42.062

МЕТОД ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ КОМПОНЕНТ СЛОЖНОГО СПЕКТРАЛЬНОГО КОНТУРА С ИСПОЛЬЗОВАНИЕМ ПРОИЗВОДНОЙ СПЕКТРОФОТОМЕТРИИ

В. И. Сидельников

(Межфакультетская проблемная научно-исследовательская Лаборатория молекулярной биологии и биоорганической химии им, А. Н. Белозерского МГУ)

Как известно, спектры большинства химических и библогических (например, фотосинтезирующих) объектов состоят из ряда сильно перекрывающихся полос. При исследовании спектрального состава подобных систем хорошие результаты дает производная спектрофотометрия, позволяющая достаточно просто определять количество и положение спектральных компонент; однако в тех случаях, когда требуется найти значения ширины и амплитуды компонент, применяют различные методы разложения спектров [1-2], в основе которых, как правило, лежит минимизация суммы квадратов отклонения подбираемого MOдельного контура от соответствующих экспериментальных точек. Эти методы связаны с большим объемом машинного счета, а для получения удовлетворительной сходимости в ряде случаев требуется заранее знать по крайней мере треть параметров спектральных компонент $\{1\}.$

В настоящей работе предлагается метод определения параметров компонент сложного спектра, основанный на исследовании производных исходного спектра.

Пусть исходный спектр описывается суммой N гауссовых кризвых f_i:

$$f(\lambda) = \sum_{i=1}^{N} f_i = \sum_{i=1}^{N} a_i \exp\left[-\left(\frac{\lambda - \lambda_{0i}}{\Delta_i}\right)^2\right], \qquad (1)$$

тде a_i , λ_{0i} , Δ_i — амплитуда, положение максимума и ширина *i*-й компоненты. Легко показать, что *m*-я производная $f(\lambda)$ имеет вид

$$f_{(\lambda)}^{(m)} = \sum_{i=1}^{N} \frac{a_i}{\Delta_i^m} \exp\left[-\left(\frac{\lambda - \lambda_{0i}}{\Delta_i}\right)^2\right] \sum_{j=0}^{m} \alpha_j \left(\frac{\lambda - \lambda_{0i}}{\Delta_i}\right)^j, \quad (2)$$

тде α_i — коэффициенты полинома *m*-й степени, вычисляемые с помощью рекуррентной формулы

$$\alpha_{j,m} = -2\alpha_{j-1,m-1} + (j+1)\alpha_{j+1,m-1} \tag{3}$$

с условиями $\alpha_{-1,m} = \alpha_{m+1,m} = 0$ и $\alpha_{0,0} = 1$. Аналогичные результаты получаются и для линий лоренцевой формы или описываемых суммой лоренцевой и гауссовой линий. Поскольку для аналитических целей лучше подходят особенности в виде пиков, положение которых совпадает