

атомами гелия и молекулами азота: отличаются не более чем в два раза. С учетом поправок на изменение газа в мишени (показаны стрелками) можно считать, что экспериментальные данные [6, 8] удовлетворительно согласуются с расчетами величины $\eta = \sigma[k (1s2s2p)^4 P]/\Sigma\sigma (1s^2nl).$

Итак, на основании сравнения экспериментальных данных с расчетами, выполненными в приближении: Бринкмана — Крамерса, можно сде-

Рис. 3. Отношение сечения захвата электрона метастабильным гелиеподобным ионом к сечению захвата электрона двухэлектронным ионом, находящимся в основном состоянии, в-Не в зависимости от заряда налетающего иона Z для $v = 8 \cdot 10^8$ см/с. Пунктирная кривая представляет ту же зависимость с учетом распада $(1s2s2p)^4$ P-состояния

лать вывод о том, что эта простая модель в исследованном интер! вале скоростей и зарядов налетающих ионов качественно верно описывает отношение сечений перезарядки ионов, находящихся в основном, и метастабильном состояниях, и является полезной для прогнозирования аналогичных сечений для гелиеподобных и литиеподобных иснов с зарядами, близкими к рассмотренным.

СПИСОК ЛИТЕРАТУРЫ

[1] McDowell M. R. C., Coleman J. P. Introduction to the Theory of Ion-Atom Collisions. Ch. 4. Amsterdam, North-Holland, 1970. [2] Lin C. D., Soong S. C., Tünnel L. N. Phys. Rev. A, 1978, 17, p. 1646. [3] Ford A. L., Reading J. F., Becker R. L. J. Phys. B, 1982, 15, p. 3257. [4] Ermolaev A. M., Noble C. J., Brandsen B. H. Ibid., p. 457. [5] Slater J. C. Phys. Rev., 1930, 36, p. 57. [6] Дмитриев И. С., Теплова Я. А., Николаев В. С. Экспериментальные исследования с быстрыми метастабильными атомами и ионами (лекции). М.: Изд-во-МГУ, 1978, с. 49—60. [7] Сенашенко В. С., Симонов Т. А. Журн. прикл.. спектр., 1980, 32, с. 117. [8] Нуеlplünd P. J. Phys. B, 1976; 9, p. 1555.

> Поступила в редакцию 17.07.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 4

УДК 549.121.7

.

О ТОЧНОСТИ РАВНОВЕСНЫХ ХАРАКТЕРИСТИК ЭЛЕКТРОННО-ФОТОННЫХ КАСКАДОВ

И. П. Иваненко, В. В. Сизов

(НИИЯФ)

Введение. Исследованию «равновесных» задач, т. е. рассмотрению исходных уравнений ЭФКТ, проинтегрированных по глубине *t*, посвящено много работ. Их можно найти в [1—4]. Интерес к этим задачам определяется тем, что их значительно легче решить, чем исходные уравнения, а также тем, что для нахождения многих одномерных и трехмерных характеристик ЭФК развит эффективный метод моментов.

28

[4, 5]. К настоящему времени наиболее детально исследована «математическая» точность «равновесных спектров» Тамма и Беленького [5] асимптотических решений средних равновесных уравнений в приближении Б теории. «Физическая» точность равновесного спектра изучена меньше, что обусловлено большими трудностями получения точных решений уравнений, учитывающих все процессы взаимодействия излучения с веществом. Численные методы или метод Монте-Карло не позволяли получить решения во всей области изменения переменных $0 \leq E/E_0 \leq 1$, особенно для дифференциальных спектров, используемых в методе моментов. В работах обычно приводились оценки точности равновесного спектра в некоторых интервалах изменения переменных E_0 и E/E_0 . До настоящего времени не было выполнено систематического исследования вкладов отдельных процессов во всей области изменения переменных, в особенности при $E/E_0 \leq 1$, не было опубликовано удобных формул (и цифрового материала) для представления физически точных значений дифференциальных равновесных спектров. и прежде всего спектра фотонов, который отличается от варианта Тамма и Беленького на многие десятки процентов.

В настоящей работе проведены систематические исследования дифференциальных и интегральных равновесных спектров электронов и фотонов в ливнях, вызванных первичным электроном или фотоном. Спектры как функции энергии частиц получены численным решением интегральных уравнений каскадной теории с учетом поляризации среды, неполного экранирования, комптон- и фотоэффекта. Исследована точность таких приближений, как пренебрежение массой покоя электрона и описание ионизации дифференциальным по энергии членом.

Метод расчета. Проинтегрировав уравнения каскадной теории поглубине t с учетом граничных условий (падение первичной частицы с энергией E на полубесконечную среду), получим для конечных частей равновесных спектров следующую систему интегральных уравнений:

$$\int_{E}^{E_{0}} P(E_{0}, E') \varphi_{PP}(E', E) dE' + \int_{E}^{E_{0}} \Gamma(E_{0}, E') \varphi_{\Gamma P}(E', E) dE' - - P(E_{0}, E) \mu_{P}(E) + \left\{ \begin{array}{l} \varphi_{PP}(E_{0}, E) / \mu_{P}(E_{0}) \\ \varphi_{\Gamma P}(E_{0}, E) / \mu_{\Gamma}(E_{0}) \end{array} \right\} = 0, \quad (1a)$$

$$\int_{E}^{E_{0}} P(E_{0}, E') \varphi_{P\Gamma}(E', E) dE' + \int_{E}^{E_{0}} \Gamma(E_{0}, E') \varphi_{\Gamma \Gamma}(E', E) dE' - - - \Gamma(E_{0}, E) \mu_{\Gamma}(E) + \left\{ \begin{array}{l} \varphi_{P\Gamma}(E_{0}, E) / \mu_{P}(E_{0}) \\ \varphi_{\Gamma \Gamma}(E_{0}, E) / \mu_{\Gamma}(E_{0}) \end{array} \right\} = 0 \quad (16)$$

(мы пользуемся обозначениями, принятыми в [1, § 63]). Здесь и далее первая строка выражения, заключенного в фигурные скобки, относится к случаю первичного электрона, вторая — к случаю первичного фотона. Для сечений радиационного торможения, образования пар и комптонэффекта были взяты соответственно выражения (2.4.1—2.4.3), (2.4.15— 2.4.16) и (2.3.11) [6]. Учет поляризации среды, устраняющий инфракрасную расходимость сечения радиационного торможения, проводился в соответствии с [7]. Сечение фотоэффекта, а также сечение столкновения электронов каскада с электронами среды с учетом возбуждения и ионизации атомов среды вычислялось, как в [4]. Сечения поглощения фотонов брались из таблиц [8].

Заметим, что граничные значения спектров при $E = E_0$ получаются

29

непосредственно из уравнений (1), если в них отбросить интегральные члены. В случае, когда ионизационные потери электрона рассматриваются как непрерывные, вместо уравнений (1) имеем

$$\dots -P(E_{0}, E) \mu_{P}(E) + \beta \frac{\partial^{P}(E_{0}, E)}{\partial E} + \left\{ \begin{matrix} 0 \\ \varphi_{\Gamma P}(E_{0}, E) / \mu_{\Gamma}(E_{0}) \end{matrix} \right\} = 0, \quad (2a)$$

$$\dots -\Gamma(E_{0}, E) \mu_{\Gamma}(E) + \left\{ \begin{matrix} 0 \\ \varphi_{\Gamma \Gamma}(E_{0}, E) / \mu_{\Gamma}(E_{0}) \end{matrix} \right\} = 0. \quad (2b)$$

Здесь многоточие стоит вместо соответствующих интегральных членов, β — критическая энергия. Граничное значение Г (E_0 , E_0) по-прежнему можно получить из уравнения (26), а для граничного значения $P(E_0, E_0)$ справедливо следующее выражение:

$$P(E_0, E_0) = \begin{cases} 1/\beta \\ 0 \end{cases}.$$

Решение уравнений (1), (2) строилось последовательно на отрезках $[E_1, E_0]$, $[E_2, E_1]$, ..., $[E_i, E_{i-1}]$ в сторону убывания E от $E = E_0$. На каждом сегменте искались поправочные функции $p_i(E)$, $\gamma_i(E)$ к приближенному решению уравнений

$$P(E_0, E) = \frac{E_0}{2,29E^2} p_i(E), \ \Gamma(E_0, E) = \frac{E_0}{2,29 \cdot 0;77E^2} \gamma_i(E),$$

где $E \Subset [E_i, E_{i-1}]$, причем для поправочных функций использовалась линейная аппроксимация. Точность на каждом сегменте контролировалась путем сравнения решений, полученных с одинарным и двойным шагом, и устанавливалась на уровне десятых долей процента. Шаг (длина сегмента) выбирался автоматически в зависимости от достигнутой точности и колебался от тысячных долей МэВ до десятков МэВ. Получаемые приближенные решения — непрерывные функции E.

Результаты и обсуждение. Приводимые в этом разделе результаты расчетов дифференциальных P, $\Gamma(E_0, E)$ и интегральных $N_{P,\Gamma}(E_0, E)$ равновесных спектров относятся к ливням, порождаемым в свинце первичным электроном или фотоном энергии 10^3 МэВ. Изображенные на графиках спектры нормированы на равновесные спектры Тамма — Беленького [5]:

$$\begin{split} P^{\text{TB}}(E_{0}, E) &= \frac{\varepsilon_{0}}{\beta} \left\{ (\varepsilon + 1) e^{\varepsilon} \left[\int_{\varepsilon}^{\varepsilon_{0}} \frac{e^{-x}}{x} dx + \frac{e^{-\varepsilon_{0}}}{\varepsilon_{0}} \right] - 1 \right\}, \\ N_{P}^{\text{TB}}(E_{0}, E) &= \frac{E_{0}}{\beta} \left\{ 1 - \varepsilon e^{\varepsilon} \left[\int_{\varepsilon}^{\varepsilon_{0}} \frac{e^{-x}}{x} dx + \frac{e^{-\varepsilon_{0}}}{\varepsilon_{0}} \right] \right\}, \\ \Gamma^{\text{TB}}(E_{0}, E) &= \frac{N_{P}^{\text{TB}}(E_{0}, E)}{0,77E}, \\ N_{\Gamma}^{\text{TB}}(E_{0}, E) &= \frac{E_{0}}{0,77\beta} \left\{ -\frac{1}{\varepsilon_{0}} + e^{\varepsilon} \left[\int_{\varepsilon}^{\varepsilon_{0}} \frac{e^{-x}}{x} dx + \frac{e^{-\varepsilon_{0}}}{\varepsilon_{0}} \right] \right\}, \end{split}$$

где $\varepsilon = 2,29 E/\beta$. На всех рисунках кривые 1 получены в приближении Б теории; 2 — то же, что 1, но с учетом различия между кинетической и полной энергиями электрона; 3 — то же, что и 2, но с учетом неполного экранирования; 4 — то же, что и 3, но с учетом эффекта Комптона; 5 — то же, что и 4, но с учетом фотоэффекта. Сплошной линией на рисунках изображены электронные спектры, пунктирной фотонные. На части а рисунков изображены спектры в ливнях от первичного электрона, на части δ — от первичного фотона.

Рис. 1

На рис. 1 приведены интегральные спектры, полученные при описании ионизации в дифференциальной форме, для $\beta = 7,4$ МэВ, что означает нулевые граничные значения при $E = E_0$ для спектров $[N_P]^P$, $[N_P]^{\Gamma}$ и $[N_{\Gamma}]^P$, в то время как $[N_{\Gamma}(E_0, E_0)]^{\Gamma} = 1/\mu_{\Gamma}(E_0)$. Граничные значения спектров Тамма — Беленького соответствуют случаю первичного электрона, поэтому электронные и фотонные кривые на рис. 1, *а*. выходят на 1, в то время как на рис. 1, б электронная кривая стремится к 0, а фотонная — к бесконечности. В области $E/E_0 > 0,5$ кривые, соответствующие различным моделям, совпадают, а с уменьшением энергии расходятся. Можно отметить следующие особенности этих кривых.

Из сравнения рис. 1, а и 1, б видно, что в области Е/Е0<0,5 лио своем происхождении [1-4]. Спектры 1 привень уже «забыл» $E/E_0 < 0,5$ близки к приближенным решениям $N_{P,\Gamma}^{\text{TB}}$ и характеризуют их «математическую точность». Учет массы покоя электрона влияет на рассматриваемые характеристики каскада главным образом через процесс образования пар, который становится при этом пороговым явле--нием: $\varphi_{\text{пар}}(E', E) = 0$, если $E' - E < 2m_e$, что приводит к уменьшению. числа электронов. В то же время уменьшение сечения поглощения фотонов ($\mu_{\text{man}}(E) \rightarrow 0$ при $E \rightarrow 2m_e$) приводит к расходимости электронного. спектра (кривые 2). Учет неполного экранирования также приводит к уменьшению сечений $\varphi_{nap}(E', E)$ и $\mu_{nap}(E)$, что еще более увеличивает отклонение рассчитанных спектров от приближенных значений (кривые 3). При учете эффекта Комптона (кривые 4) сечение поглощения фотонов $\mu_{\Gamma}(E)$ не обращается в 0 в точке $E = 2m_{e}$, что устраняет расходимость фотонного спектра. Учет поглощения фотонов за счет фотоэффекта сильно меняет фотонный спектр в области $E \ll 1$ МэВ. Кривые 5 характеризуют «физическую» и «математическую» (суммарную) погрешность спектров Тамма --- Беленького. В целом можно отметить, что электронный спектр сравнительно мало чувствителен к учету различных «тонких» эффектов и отличается от значения, полученного при «грубом» описании не более чем на 30-40%, в то время как соответствующие значения фотонного спектра могут различаться в 2 и более раза.

На рис. 2 приводятся дифференциальные равновесные спектры, полученные при учете ионизации в дифференциальной (кривые I) и интегральной (кривые II, III) формах. С целью более подробного изо-

бражения кривых при E/E₀>0,5 по оси абсцисс отложена величина $lg(1-E/E_0)$. Для кривых I, II ионизационные потери электронов считались постоянными и равными β=7,4 МэВ, а кривая III получена с учетом зависимости ионизационных потерь от энергии [6]. При Е/Е0> >0,5 кривые 1, 11 резко отличаются от приближенных выражений и друг от друга (рис. 2, а). При уменьшении энергии эти кривые сближаются, так как ионизационные потери не играют в этой области значительной роли, а при E/E₀<0,1 снова расходятся, поскольку учет столкновений с большой передачей энергии заметно увеличивает число электронов малых энергий. Спектры III проходят ниже спектров II, больше так как при $E > \beta$ потери энергии электрона на ионизацию критической энергии. Отметим также, что различие между спектрами III на рис. 2, а, б значительно и сохраняется вплоть до пороговой энергии.

СПИСОК ЛИТЕРАТУРЫ

[1] Росси Б. Частицы больших энергий. М.: ИЛ, 1955. [2] Беленький С. З., Иваненко И. П. УФН, 1959, 69, № 4, с. 591. [3] Иваненко И. П. Электромагнитные каскадные процессы. М.: Изд-во МГУ, 1972. [4] Беляев А. А. и др. Электронно-фотонные каскады в космических лучах при сверхымсоких энергиях. М.: Наука, 1980. [5] Беленький С. З. Лавинные процессы в космических лучах. М., 1948. [6] Хаякава С. Физика космических лучей. Ч. 1. Ядерно-физический аспект. М.: Мир, 1973. [7] Тер-Микаэлян М. Л. Изв. АН СССР, сер. физ., 1955, 19, с. 657. [8] Ниbbel G. Н. NSRDS-NBS, 1969, 29, р. 1.

Поступила в редакцию 05.09.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 4

УДК 523.165

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР КАСКАДОВ, ОБРАЗОВАННЫХ ПРОТОНАМИ В ЭМУЛЬСИОННОЙ СТОПКЕ, ЭКСПОНИРОВАВШЕЙСЯ НА СПУТНИКЕ «ИНТЕРКОСМОС-6»

Е. С. Вакуленко, В. И. Зацепин, А. В. Подгурская, Н. В. Сокольская, Ч. А. Третьякова, Л. А. Хейн

(НИИЯФ)

1. Аппаратура. Большая эмульсионная стопка была проэкспонирована в 1972 г. на спутнике «Интеркосмос-6» [1]. Продолжительность

32