УДК 621.373.538

ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННОЙ СТАТИСТИКИ ИЗЛУЧЕНИЯ В НЕЛИНЕЙНЫХ СРЕДАХ МЕТОДОМ ВОЗМУЩЕНИЙ

С. М. Бабиченко, В. П. Кандидов

(кафедра общей физйки и волновых процессов)

Введение. Анализ совместного воздействия нелинейных эффектов и неоднородностей среды на случайную модуляцию светового поля представляет интерес для целого ряда задач нелинейной статистической оптики. Характерной особенностью данных задач является взаимное влияние флуктуаций излучения и параметров среды, образующих замкнутую нелинейную систему «излучение — среда». Аналитические методы исследования связаны со значительными трудностями и основываются на разрыве обратной связи в системе «излучение — среда». Традиционным является использование предположения о сохранении нормального закона распределения флуктуаций поля в нелинейной среде, позволяющее получить замкнутую систему уравнений относительно моментов светового поля [1]. Такое предположение физически может быть обосновано инерционностью нелинейных процессов в случае теплового самовоздействия [2], а также малостью нелинейных эффектов, когда длина развития нелинейности значительно превышает характерный продольный масштаб задачи [3]. Жесткое ограничение на статистику флуктуаций сужает область возможных исследований. В частности, широко применяемое замкнутое уравнение для первой функции корреляции светового поля оказывается несправедливым в случае мелкомасштабной самофокусировки, при которой сильно меняется статистика светового поля.

Свободным от ограничений является метод Монте-Карло, позволяющий наиболее полно исследовать основные статистические характеристики излучения [4]. Однако в настоящее время границы применения этого метода определяются возможностями современных ЭВМ.

Для исследования преобразования пространственной статистики излучения на начальном этапе распространения в нелинейной среде применим метод возмущений, единственным ограничением которого является условие малости относительных флуктуаций светового поля. До настоящего времени использование этого метода ограничивалось анализом устойчивости флуктуаций световой волны в кубичной среде [5] и светового пучка в турбулентной атмосфере [6,7]. Для детального исследования преобразования статистики излучения в пространстве и времени необходим количественный анализ приближенных уравнений, полученных в рамках метода возмущений.

Основные уравнения. В приближении параболической теории дифракции комплексная амплитуда световой волны $E(\mathbf{r}, z)$ в среде с неоднородностями $r_{\rm e}\gg\lambda$ описывается уравнениями

$$\begin{cases} 2ik \,\partial E/\partial z = \Delta_{\perp} E + k^2 \varepsilon_{\mu n} E + k^2 \varepsilon E, \\ \mathscr{L}(\varepsilon_{\mu n}) = EE^*. \end{cases}$$

Здесь $\tilde{\epsilon}(\mathbf{r}, z)$ — флуктуации диэлектрической проницаемости среды, \mathscr{L} — оператор, вид которого определяется механизмом нелинейности среды. Согласно методу возмущений, поле $E(\mathbf{r}, z)$ представляется в виде

$$E(\mathbf{r}, z) = E_0 \exp(ihz) \{1 + \xi(\mathbf{r}, z)\},\$$

$$\varepsilon_{\mathrm{Hz}} = \varepsilon_{\mathrm{Hz}}^0 (E_0) + \varepsilon_{\mathrm{Hz}} (\xi),\$$

где $h = k\epsilon^{0}_{\rm H\pi}/2$ — изменение волнового числа невозмущенной волны E_{0} за счет нелинейности, ξ — комплексное возмущение поля ($<\xi>=0$, $|\xi|<1$). Линеаризованные с точностью до $|\xi|^2$ уравнения для возмущений имеют вид

$$\begin{cases} 2ik \,\partial\xi/\partial z = \Delta_{\perp}\xi + k^{2}\varepsilon_{\mu\pi}(\xi) + k^{2}\varepsilon(1+\xi), \\ \mathcal{L}\left(\varepsilon_{\mu\pi}(\xi)\right) = E_{0}^{2}(\xi+\xi^{*}). \\ \mathcal{L}\left(\varepsilon_{\mu\pi}^{0}\right) = E_{0}^{2}. \end{cases}$$
(1)

При керровской нелинейности среды $\mathscr{L}^{-1} = \varepsilon_2/2\varepsilon_0$, при тепловой нелинейности в общем случае

$$\frac{\partial \varepsilon}{\partial T} \mathscr{L} = \left(\frac{\rho c_p}{\alpha} \frac{\partial}{\partial t} - \frac{\varkappa}{\alpha} \Delta_{\perp}\right), \quad \varepsilon_{\text{BR}}(\xi) = \frac{\partial \varepsilon}{\partial T} Q, \quad \varepsilon_{\text{BR}}^0 = \frac{\partial \varepsilon}{\partial T} T_0, \quad (2)$$

где р, c_p , α , \varkappa — соответственно плотность, теплоемкость, коэффициенты поглощения и теплопроводности среды; T_0 и $Q(\mathbf{r}, z, t)$ — поля температуры, наведенные соответственно мощной плоской волной E_0 и возмущениями $\xi(\mathbf{r}, z, t)$ ($|Q/T_0| < 1$).

Полная система уравнений для корреляционных функций возмущений $\Gamma_1 = \langle \xi(\mathbf{r}_1, z, t) \xi^*(\mathbf{r}_2, z, t) \rangle$, $\Gamma_2 = \langle \xi(\mathbf{r}_1, z, t) \xi(\mathbf{r}_2, z, t) \rangle$ с учетом (1), (2) в приближении δ -коррелированности по z флуктуаций $\tilde{\varepsilon}$ (см. Приложение) имеет вид

$$2ik \frac{\partial \Gamma_{1}}{\partial z} = (\Delta_{1} - \Delta_{2}) \Gamma_{1} + k^{2} \left(\left\langle \epsilon_{\mathrm{H}\pi_{1}} \xi_{2}^{*} \right\rangle - \left\langle \epsilon_{\mathrm{H}\pi_{2}} \xi_{1} \right\rangle \right) + k^{2} \left(\psi_{12}^{*} - \psi_{21} \right),$$

$$2ik \frac{\partial \Gamma_{2}}{\partial z} = (\Delta_{1} + \Delta_{2}) \Gamma_{2} + k^{2} \left(\left\langle \epsilon_{\mathrm{H}\pi_{1}} \xi_{2} \right\rangle + \left\langle \epsilon_{\mathrm{H}\pi_{2}} \xi_{1} \right\rangle \right) + k^{2} \left(\psi_{12} + \psi_{21} \right),$$

$$\left\langle \mathcal{L} \left(\epsilon_{\mathrm{H}\pi_{1}} \right) \xi_{m} \right\rangle = E_{0}^{2} \left\{ \delta_{1l} \Gamma_{l}^{*} + \delta_{2l} \Gamma_{l} + \Gamma_{m} \right\}, \ l, \ m = 1, \ 2,$$

$$2ik \frac{\partial \psi_{lm}}{\partial z} = \Delta_{m} \psi_{lm} + \left\langle \epsilon_{\mathrm{H}\pi_{m}} \widetilde{\epsilon_{l}} \right\rangle + k^{2} B_{\varepsilon}, \ \psi_{lm} = \left\langle \widetilde{\epsilon_{l}} \xi_{m} \right\rangle.$$
(3)

Граничные условия для Γ_1 , Γ_2 определяют когерентность возмущений падающего излучения. Для фазовомодулированной волны в соответствии с [8] $\Gamma_1(\mathbf{r}_1, \mathbf{r}_2, 0) = \Gamma_1^{0}(\mathbf{r}_1, \mathbf{r}_2) = -\Gamma_2^{0}$, для амплитудномодулированной волны $\Gamma_1^{0} = \Gamma_2^{0}$, в случае гауссовской статистики флуктуаций $\Gamma_1^{0} \neq \neq 0$, $\Gamma_2^{0} = 0$. Во всех случаях $\psi(\mathbf{r}_l, \mathbf{r}_m, 0) = 0$.

В дальнейшем без ограничения общности приведены результаты для одномасштабных гауссовых функций

 $\Gamma_{i}^{0} = \sigma_{0}^{2} \exp(-r^{2}/(2r_{0}^{2})), B_{\varepsilon} = \sigma_{\varepsilon}^{2} \exp(-r^{2}/(2r_{\varepsilon}^{2})), r = |\mathbf{r}_{1} - \mathbf{r}_{2}|.$

Система уравнений (3) является замкнутой, если оператор \mathscr{L} не зависит от времени. В случае нестационарного теплового самовоздействия для замыкания системы (3), необходимо уравнение относительно $\partial\xi/\partial t$. Для этого расстояние по оси z разбивается на последовательность участков дифракции в нелинейной однородной среде и участков рассеяния на неоднородностях $\tilde{\epsilon}$. Такое представление процесса распространения, известное в вычислительной математике как расщепление, справедливо при выполнении условия [9]

$$\Delta z < \min \{kr_{\varepsilon}^2, r_{\varepsilon}/\widetilde{\varepsilon}, h^{-1}\}.$$

В этом случае на участке самовоздействия система (3) становится однородной и возможно факторизованное представление полей ξ , Q в

44

виде $\xi(\mathbf{r}, z, t) = X(\mathbf{r}, z)B(t)$, $Q(\mathbf{r}, z, t) = Y(\mathbf{r}, z)B(t)$. Тогда система (3) распадается на две замкнутые системы уравнений. На участке рассеяния в *n*-м интервале разбиения в случае малых флуктуаций $\tilde{\epsilon}$ (см. Приложение) имеем

$$\begin{cases} \partial \Gamma_{1}^{e} / \partial z = -ik (\psi_{12}^{*} - \psi_{21})/2, \\ \partial \Gamma_{2}^{e} / \partial z = -ik (\psi_{12} + \psi_{21})/2, \\ \partial \psi_{1m} / \partial z = -ik B_{e}/2, \ l, m = 1, \ 2. \end{cases}$$
(4)

На участке дифракции в нелинейной среде с номером *n*

$$\begin{cases}
2ik \frac{\partial \Gamma_{1}}{\partial z} = (\Delta_{1} - \Delta_{2}) \Gamma_{1} + k^{2} \frac{\partial \varepsilon}{\partial T} (\varphi_{12}^{*} - \varphi_{21}), \\
2ik \frac{\partial \Gamma_{2}}{\partial z} = (\Delta_{1} + \Delta_{2}) \Gamma_{2} + k^{2} \frac{\partial \varepsilon}{\partial T} (\varphi_{12} + \varphi_{21}), \\
\frac{\rho c_{p}}{2} \frac{\partial \varphi_{lm}}{\partial t} - \varkappa \Delta_{l} \varphi_{lm} = \alpha E_{0}^{2} \{\delta_{1l} \Gamma_{l}^{*} + \delta_{2l} \Gamma_{l} + \Gamma_{m}\}, \\
\varphi_{lm} = \langle Q_{l} \xi_{m} \rangle, \quad l, \ m = 1, 2.
\end{cases}$$
(5)

В уравнениях (4), (5) z — локальная координата, $z \in [0, \Delta z]$. На границах интервалов разбиения условия сопряжения имеют вид

 $\Gamma_i^{\varepsilon}(n, 0) = \Gamma_i(n-1, \Delta z); \ \Gamma_i(n, 0) = \Gamma_i^{\varepsilon}(n, \Delta z).$

Критериями подобия задачи (3) являются a_0 — характерный поперечный масштаб флуктуаций є, є и Q; $z = ka_0^2$ — дифракционная длина для масштаба a_0 ; $t_0 = a_0^2 \rho c_p / \kappa$ — характерное время установления нелинейности на масштабе a_0 ; отношение дисперсии флуктуаций среды и дисперсии флуктуаций падающего излучения $N = \sigma_e^2 / (\sigma_0^2 \varepsilon_{0 n \pi}^2)$. Масштаб $a_0 = (4\varepsilon_0 k^{-2}\varepsilon_2^{-1} |E_0|^{-2})^{1/2}$ в керровской среде характернзует область плоской волны, содержащую критическую мощность самовоздействия $P_{\kappa p}$. В среде с тепловой нелинейностью $a_0 = (k^2 \alpha |E_0|^2 |\partial \varepsilon / \partial T |\kappa^{-1} / /2)^{-1/4}$ определяет область, в которой поглощенная средой энергия излучения равна критической (через время t_0 от начала прогрева в тепловой нестационарной задаче).

В дальнейшем при обсуждении результатов используются безразмерные переменные $\rho = r/a_0$, $\zeta = z/z_0$, $\tau = t/t_0$. Система (3) решалась численно методом функций Грина, полученных в спектральном представлении. При количественном исследовании задачи (1) переход к системе (3) более предпочтителен, чем усреднение решения (1). В этом случае возможно на раннем этапе учесть симметрию и статистические свойства решения, сокращая тем самым объем необходимых вычислений.

Основные результаты. Преобразование пространственной статистики частично когерентного излучения в случайно-неоднородной среде с кубичной нелинейностью исследовано методом возмущений в [10]. Основные результаты для нестационарного теплового самовоздействия получены в [11].

Анализ результатов показал зависимость поведения основных статистических характеристик излучения как от механизма нелинейности и параметров среды, так и от вида начальных флуктуаций поля (амплитудная, фазовая начальные модуляции, гауссовская статистика флуктуаций).

В случае самовоздействия когерентной волны, рассеянной на амллитудном случайном экране, наблюдается монотонный рост дисперсии флуктуаций поля независимо от вида нелинейности среды (рис. 1, 1, 3). Такое поведение σ_{ϵ}^2 обусловлено проявлением нелинейных эффектов уже при малой длине распространения ζ , что приводит к перекачке энергии из регулярной части волны во флуктуирующую часть за счет АМ-ФМ конверсии. При заданной длине распространения ζ величина σ_{ϵ}^2 возрастает с ростом начального масштаба ρ_0 . В случайно-неоднородной среде «подкачка» фазовых флуктуаций, вызванных неоднородностями ε , приводит к ускорению нарастания σ_{ϵ}^2 .

Рис. 1. Относительная дисперсия флуктуаций поля в среде с кубичной (К) и тепловой (Т) нелинейностью. Результаты для фазовой начальной модуляции (ФМ) помечены треугольниками, для амплитудной (АМ) — квадратами, для случайнонеоднородной среды ($N \gg 1$) — кружками: $I = \rho_0 = 1.5, \tau = 2$ (T, AM), N = 0; 2 = - $\rho_0 = 0.8$ (K, Φ M), $N = 0; 3 - \rho_0 = 0.8$ (K, AM), $N = 0; 4 - \rho_{\tilde{e}} = 1$ (K), $N \gg 1; 5 - \rho_0 = 1.5, \rho_e = 1, \tau = 2$ (T, Φ M), N = 1; 6 - $\rho_e = 1, \tau = 2$ (T), $N \gg 1; 7 - \rho_0 = 1.5, \tau \gg 1$ (T, Φ M), $N = 0; 8 - \rho_0 = 1.5, \tau = 2$ (T, Φ M), N = 0

Рис. 2. Радиус корредящии флуктуаций поля в нелинейной среде: $1 - \rho_0 =$ = 1,5, $\tau = 2$ (T, AM); $2 - \rho_0 = 1,5$, $\tau = 0,6$ (T, AM); $3 - \rho_0 = 1,5$, $\tau = 0,6$ (T, Φ M); $4 - \rho_0 = 1,5$, $\tau = 0,6$ (T, Φ M), фокусирующая среда ($\partial e / \partial T > 0$); $5 - \rho_0 = 1,5$, $\tau \gg 1$ (T, Φ M); $6 - \rho_0 = 0,8$ (K, AM); $7 - \rho_0 = 0,8$ (K, Φ M), дефокусирующая среда ($\epsilon_2 < 0$); $8 - \rho_0 = 0,8$ (K, Φ M). Для кривых (3, 4, 7, 8) $\partial B_{A\phi}/\partial t < 0$ при $\zeta \sim 0$

При фазовой начальной модуляции возрастает роль дифракции на начальном участке распространения. Поведение дисперсии флуктуаций о_г² в этом случае определяется механизмом нелинейности. В случае самофокусировки σ_{ξ^2} монотонно нарастает, опережая при $\zeta < 1$ рост σ_{ξ^2} для амплитудной начальной модуляции (рис. 1, 2). В условиях тепловой дефокусировки проявляется конкурирующий характер изменения фазы за счет нелинейности и дифракционных эффектов. Это вызывает немонотонный характер изменения дисперсии флуктуаций daзы σ_{ϕ^2} и амплитуды σ_{A^2} , который определяет поведение σ_{t^2} (для стафлуктуаций $\sigma_{\xi^2} = \sigma_A^2 + \sigma_{\varphi^2}$ [8]). тистически однородных малых При ζ<1 нелинейность препятствует преобразованию фазовых флуктуаций в амплитудные (образующиеся случайные тепловые линзы замедляют дифракционное расплывание возмущений плоской волны). Это приводит к первоначальному спаду σ_{ξ^2} (рис. 1, 8). По мере увеличения σ_A^2 происходит накопление нелинейности как вдоль трассы, так и во времени ($\tau \sim 1$), и σ_{ξ^2} начинает нарастать (рис. 1, 8, $\zeta > 2$). Как показал анализ, при установлении процесса распространения BO времени

46.

 $(\tau \gg 1)$ σ_{ϵ}^2 осциллирует вдоль ζ с одновременным нарастанием среднегоуровня. Амплитуда осцилляций увеличивается с ростом масштаба ρ_0 . Влияние флуктуаций ϵ нарушает осциллирующий характер $\sigma_{\epsilon}^2(\zeta)$ и при $\zeta > 2$ вызывает монотонный рост дисперсии флуктуаций (рис. 1, 5). Для первоначально когерентного излучения в неоднородной среде скорость нарастания σ_{ϵ}^2 определяется масштабом ρ_{ϵ} (рис. 1, 4, 6).

Поведение радиуса корреляции на малых расстояниях $\zeta < 1$ определяется тенденцией изменения взаимной корреляции амплитуды и фазы $B_{A\phi}$ падающего излучения в нелинейной среде и видом начальной случайной модуляции поля. Поведение ρ_{ξ} при $\zeta > 2$ определяется видом нелинейности.

В случае амплитудной начальной модуляции падающей волны (а также в случае гауссовской статистики флуктуаций) распространение излучения сопровождается возрастанием радиуса корреляции в начале трассы (рис. 2, 2, 6). При дальнейшем распространении в среде с кубичной нелинейностью ρ_{t} стремится к характерному масштабу $\rho_{\rm H\pi} \sim 1$, определяемому величиной нелинейности и не зависящему от начальных условий (рис. 2, 6). В среде с тепловой нелинейностью с ростом расстояния ζ величина ρ_{t} продолжает нарастать, испытывая слабые колебания относительно среднего уровня. Со временем происходит накопление нелинейности и ρ_{t} нарастает быстрее (рис. 2, 1).

В случае локального самовоздействия волны, первоначально рассеянной на фазовом экране, распространение излучения в среде с кубичной нелинейностью сопровождается декорреляцией излучения в начале трассы, в то время как при тепловом самовоздействии (т «1) радиус корреляции первоначально возрастает (рис. 2, 3, 8). Различие в поведении от объясняется различным действием нелинейности. Если в среде с кубичной нелинейностью нелинейность ускоряет преобразование фазовых флуктуаций в амплитудные, что соответствует уменьшению эффективной дифракционной длины, то локальная тепловая нелинейность препятствует этому преобразованию, т. е. увеличивается эффективный дифракционный масштаб флуктуаций. При дальнейшем распространении ($\zeta > 1$) в среде с кубичной нелинейностью $\rho_{\epsilon} \rightarrow \rho_{\text{нл.}}$ в условиях теплового самовоздействия происходит декорреляция излучения. Уменьшение от в этом случае связано с накоплением нелинейности по трассе, которая изменяет знак B_{Aw} с отрицательного (соответствующего линейному распространению) на положительный. Область по ζ , где $B_{Aq} \rightarrow 0$, определяет минимум в зависимости $\rho_{\varepsilon}(\zeta)$.

В условиях теплового самовоздействия накопление нелинейности. происходит и за время действия светового импульса. Поэтому с ростом т возрастает влияние амплитудных флуктуаций и декорреляция излучения происходит при меньших ζ (рис. 2, 5). С ростом длительности импульса ($\tau \gg 1$) и длины трассы $\rho_{\epsilon}(\zeta)$ осциллирует с нарастанием среднего уровня. Изменяя вклад амплитудных флуктуаций в падающем излучении (например, отодвигая рассенвающий фазовый экран от границы нелинейной среды), можно изменять «начальную фазу» осцилляций ρ_{ϵ} . В соответствии с выбранными масштабами задачи длина ζ может быть выражена в единицах мощности излучения. Уменьшение радиуса корреляции в определенном диапазоне мощностей находится в качественном согласии с экспериментальными данными [12] и результатами численного анализа [13].

Выводы. Разработанная методика позволяет детально исследовать основные статистические характеристики флуктуаций светового поля в условиях самовоздействия в случайно-неоднородных средах.

Анализ результатов показал, что при самовоздействии волны с гауссовской статистикой флуктуаций, а также в случае амплитудномодулированной волны радиус корреляции возмущений в нелинейной среде возрастает независимо от вида нелинейности при ζ<1.

При локальном самовоздействии фазовомодулированной волны изменение радиуса корреляции ρ_{ξ} на коротких трассах ($\zeta < 1$) определяется знаком нелинейности и тенденцией изменения взаимной корреляции $B_{A\varphi}$ в падающем излучении за счет дифракции (см. рис. 2, 3, 4, 7, 8):

$$\operatorname{sign}(\partial \rho_{\xi}/\partial \zeta) \sim \operatorname{sign}(\partial B_{A\varphi}/\partial \zeta) \cdot \operatorname{sign}(\varepsilon_{H\pi}).$$

Полученное соотношение подтверждается экспериментальными данными [14].

С ростом длительности импульса ($\tau \gg 1$) при тепловой дефокусировке на малых трассах возможна декорреляция возмущений. Область min ρ_{ϵ} сдвигается в сторону меньших ζ с накоплением нелинейности во времени.

При больших длинах распространения ($\zeta \gg 1$) пространственная когерентность определяется видом нелинейности и не зависит от вида начальных флуктуаций.

Приложение. Уравнения для корреляторов флуктуаций поля и среды ψ_{lm} получены в приближении δ-коррелированности по *z* флуктуаций є аналогично [8].

Запишем первое уравнение системы (1) в виде

$$2ik \,\partial\beta_{lm}/\partial z - k^{2} \varepsilon_{m}\beta_{lm} =$$
$$= \Phi\left(\mathbf{r}_{l}, \mathbf{r}_{m}, z\right) + 2ik\xi_{m} \frac{\partial\widetilde{\varepsilon}_{l}}{\partial z} + k^{2}\widetilde{\varepsilon}_{l}\widetilde{\varepsilon}_{m},$$

где $\beta_{lm} = \varepsilon_l \xi_m$, $\Phi(\mathbf{r}_l, \mathbf{r}_m, z) = \Delta_m \varepsilon_l \xi_m + \varepsilon_{H\pi}(\xi_m) \varepsilon_l$. Используя тождество

$$2ik \,\partial\beta/\partial z - k^{2} \widetilde{\varepsilon}_{m} \beta = 2ik \exp\left\{-\frac{ik}{2} \int_{0}^{z} \widetilde{\varepsilon}_{m}(z') \,dz'\right\} \times \\ \times \frac{\partial}{\partial z} \left\{\exp\left(\frac{ik}{2} \int_{0}^{z} \widetilde{\varepsilon}_{m}(z') \,dz'\right)\beta\right\},$$

после преобразований получим

$$2ik\beta_{im}(z) - 2ik\beta_{im}(0) \exp\left(-\frac{ik}{2}\int_{0}^{z}\widetilde{\varepsilon}_{m}(z') dz'\right) = \int_{0}^{z} \exp\left(-\frac{ik}{2}\int_{z'}^{z}\widetilde{\varepsilon}_{m}(s) ds\right) \left\{\Phi(z') + k^{2}\widetilde{\varepsilon}_{i}\widetilde{\varepsilon}_{m} + 2ik\xi_{m}\frac{d\widetilde{\varepsilon}_{i}}{dz'}\right\} dz'.$$
(II1)

При усреднении (П1) $\left\langle \exp\left(-\frac{ik}{2}\int_{z'}^{z}\widetilde{\epsilon}_{m}(s)\,ds\right)\frac{\partial\widetilde{\epsilon}_{l}}{\partial z'}\xi_{m}\right\rangle = 0.$ Действитель-

но, ξ_m функционально зависит от развития возмущений на участке 0 < s < z', первый сомножитель определяется в интервале z' < s < z, а величина $\partial \varepsilon_l / \partial z'$ отлична от нуля на масштабе неоднородности r_e . Таким

48

образом, при *z*≫*r*, член ξ_m является статистически независимым. Так как $\langle \xi_m \rangle = 0$, то после усреднения и дифференцирования по z (П1) примет вид

$$2ik\left\{\frac{\partial}{\partial z}+\frac{k^2A(0)}{8}\right\}\psi_{lm}=\langle\Phi_{L}(z)\rangle+k^2B_{\varepsilon},$$

где $A(r) = \int B_{\varepsilon}(r, z') dz'$. При выполнении условия $L_{0} \gg h^{-1}$, $L_{0} = h^{-1}$ $=4/(k^2A(0))$ (малые флуктуации є) членом, пропорциональным $k^{2}A(0)$, можно пренебречь.

СПИСОК ЛИТЕРАТУРЫ

[1] Ахманов С. А., Дьяков Ю. Е., Чиркин А. С. Введение в статистиче-скую радиофизику и оптику. М.: Наука, 1981. [2] Воробьев В. В., Шеме-тов В. В. Квант. электроника, 1975, 2, с. 1428. [3] Пасманик Г. А. ЖЭТФ, 1974, 66, с. 490. [4] Кандидов В. П. Изв. АН СССР, сер. физ., 1983, 47, с. 1583. [5] Беспалов В. И., Литвак А. Г., Таланов В. И. В кн.: Нелинейная оптика. Новосибирск: Наука, 1968, с. 428. [6] Агровский Б. С. и др. Квант. электроника, 1980, 7, с. б9. [7] Гочелашвили К. С., Чашей И. В., Шишов В. И. Квант. электроника, 1980, 7, с. 2077. [8] Рытов С. М., Кравцов Ю. А., Татар-ский В. И. Введение в статистическую радиофизику. Ч. 2. М.: Наука, 1978. [9] Кан-дидов В. П., Леденев В. И. Квант. электроника, 1981, 8, с. 873. [10] Баби-ченко С. М., Кандидов В. П. Изв. вузов, сер. радиофиз., 1984, 27, с. 56. [11] Бабиченко С; М., Кандидов В. П. Квант. электроника, 1984, 11, с. 1372. [12] Чиркин А. С., Юсубов Ф. М. Письма в ЖТФ, 1981, 7, с. 805. [13] Алеш-кевич В. А., Лебедев С. С., Матвеев А. Н. Квант. электроника, 1984, 11, с. 1459. [14] Мякинин В. А., Тихонова Н. С. В кн.: Тез. докл. XIV Всесоюз. конф. по распространению радноволн. Л., 1984, с. 170. Поступила в редакцию

Поступила в редакцию 20.06.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1985. Т. 26. № 4

УДК 537.862

ВЛИЯНИЕ БОКОВЫХ МЕТАЛЛИЧЕСКИХ СТЕНОК НА СВОИСТВА ОТКРЫТОГО РЕЗОНАТОРА

Д. Г. Афонин, Н. Д. Бояринцев, А. И. Костиенко, А. Ф. Королев

(кафедра радиофизики СВЧ)

Одним из путей эффективного использования мощных МЦР-генераторов и лазеров на свободных электронах в субмиллиметровой области спектра является применение в качестве электродинамической системы в этих приборах резонатора Фибри-Перо [1,2]. Особенностью его использования в вакуумных СВЧ-устройствах является наличие вакуумирующих оболочек (в том числе металлических). Влияние их на свойства открытого резонатора изучалось только в работе [3].

В настоящей работе проведено экспериментальное исследование свойств резонатора Фабри-Перо, окруженного металлическим экраном, с дифракционным выводом энергии. Исследования проводились в отсутствие электронного пучка, поэтому характерные особенности таких «пассивных» резонаторов можно хорошо выявить при рассмотрении коэффициента передачи или добротности как функции частоты.

Схема установки приведена на рис. 1. Через отверстие связи в центре сферического зеркала в резонаторе возбуждался один из собственных типов колебаний. Плоское зеркало с дифракционной решеткой

4 ВМУ, № 4, физика, астрономия