образом, при *z*≫*r*, член ξ_m является статистически независимым. Так как $\langle \xi_m \rangle = 0$, то после усреднения и дифференцирования по z (П1) примет вид

$$2ik\left\{\frac{\partial}{\partial z}+\frac{k^2A(0)}{8}\right\}\psi_{lm}=\langle\Phi_{L}(z)\rangle+k^2B_{\varepsilon},$$

где $A(r) = \int B_{\varepsilon}(r, z') dz'$. При выполнении условия $L_{0} \gg h^{-1}$, $L_{0} = h^{-1}$ $=4/(k^2A(0))$ (малые флуктуации є) членом, пропорциональным $k^{2}A(0)$, можно пренебречь.

СПИСОК ЛИТЕРАТУРЫ

[1] Ахманов С. А., Дьяков Ю. Е., Чиркин А. С. Введение в статистиче-скую радиофизику и оптику. М.: Наука, 1981. [2] Воробьев В. В., Шеме-тов В. В. Квант. электроника, 1975, 2, с. 1428. [3] Пасманик Г. А. ЖЭТФ, 1974, 66, с. 490. [4] Кандидов В. П. Изв. АН СССР, сер. физ., 1983, 47, с. 1583. [5] Беспалов В. И., Литвак А. Г., Таланов В. И. В кн.: Нелинейная оптика. Новосибирск: Наука, 1968, с. 428. [6] Агровский Б. С. и др. Квант. электроника, 1980, 7, с. б9. [7] Гочелашвили К. С., Чашей И. В., Шишов В. И. Квант. электроника, 1980, 7, с. 2077. [8] Рытов С. М., Кравцов Ю. А., Татар-ский В. И. Введение в статистическую радиофизику. Ч. 2. М.: Наука, 1978. [9] Кан-дидов В. П., Леденев В. И. Квант. электроника, 1981, 8, с. 873. [10] Баби-ченко С. М., Кандидов В. П. Изв. вузов, сер. радиофиз., 1984, 27, с. 56. [11] Бабиченко С; М., Кандидов В. П. Квант. электроника, 1984, 11, с. 1372. [12] Чиркин А. С., Юсубов Ф. М. Письма в ЖТФ, 1981, 7, с. 805. [13] Алеш-кевич В. А., Лебедев С. С., Матвеев А. Н. Квант. электроника, 1984, 11, с. 1459. [14] Мякинин В. А., Тихонова Н. С. В кн.: Тез. докл. XIV Всесоюз. конф. по распространению радноволн. Л., 1984, с. 170. Поступила в редакцию

Поступила в редакцию 20.06.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1985. Т. 26. № 4

УДК 537.862

ВЛИЯНИЕ БОКОВЫХ МЕТАЛЛИЧЕСКИХ СТЕНОК НА СВОИСТВА ОТКРЫТОГО РЕЗОНАТОРА

Д. Г. Афонин, Н. Д. Бояринцев, А. И. Костиенко, А. Ф. Королев

(кафедра радиофизики СВЧ)

Одним из путей эффективного использования мощных МЦР-генераторов и лазеров на свободных электронах в субмиллиметровой области спектра является применение в качестве электродинамической системы в этих приборах резонатора Фибри-Перо [1,2]. Особенностью его использования в вакуумных СВЧ-устройствах является наличие вакуумирующих оболочек (в том числе металлических). Влияние их на свойства открытого резонатора изучалось только в работе [3].

В настоящей работе проведено экспериментальное исследование свойств резонатора Фабри-Перо, окруженного металлическим экраном, с дифракционным выводом энергии. Исследования проводились в отсутствие электронного пучка, поэтому характерные особенности таких «пассивных» резонаторов можно хорошо выявить при рассмотрении коэффициента передачи или добротности как функции частоты.

Схема установки приведена на рис. 1. Через отверстие связи в центре сферического зеркала в резонаторе возбуждался один из собственных типов колебаний. Плоское зеркало с дифракционной решеткой

4 ВМУ, № 4, физика, астрономия

Рис. 1. Блок-схема экспериментальной установки: 1 — блок питания, 2 — клистрон, 3 — диэлектрический волновод, 4, 5 зеркала резонатора, 6 — индикатор, 7 — рупор, 8 — аттенюатор, 9 — СВЧ-детектор, 10 — осциллограф, 11 — узкополосный усилитель, 12 — фазовый детектор, 13 — самописец

перемещалось относительно сферического с помощью микрометрической подачи. Зеркала резонатора были изготовлены из меди с нанесением серебряного покрытия методом вакуумного напыления.

Измерения проводились в 8-мм диапазоне. Период дифракционной решетки на плоском зеркале d=3 мм.

Резонансный коэффициент передачи по мощности в случае квадратичной характеристики детектора зависит от добротности согласно [4]:

$$K_{\rm D} = \alpha Q_{\rm H}^2$$

где $Q_{\rm H}$ — нагруженная добротность, α — коэффициент пропорциональности,

$$Q_{\rm H}=2\pi l/(\lambda\delta_{\rm H}),$$

 $\delta_{\rm H}$ — суммарные потери нагруженного резонатора, включающие в себя потери на дифракционной решетке, омические потери в оболочке и: зеркалах и потери на связь.

Рис. 2. Зависимость добротности ТЕ M_{00g} типа колебаний от расстояния между зеркалами: 1 резонатор с. боковыми стенками, 2— резонатор без оболочки

(1)

(2)

Рис. 3. Зависимость средних потерь резонатора от числа Френе-ля; сплошная кривая — данныенастоящей работы, пунктир — расчет [5]

На рис. 2 представлены экспериментальные кривые, изображающие изменение добротности основного типа колебаний с увеличением расстояния *l* между зеркалами, причем кривая 1 соответствует резонатору с боковыми стенками, кривая 2 — резонатору без оболочки (*R* радиус кривизны сферического зеркала).

Нагруженная добротность Q_н определялась из следующего соотношения:

$$Q_{\rm H} = l/\Delta l$$

где Δl — ширина резонансной кривой, вычерченной самописцем, в единицах длины на уровне половинной мощности.

Неравномерный ход зависимости Q = f(l/R) объясняется наличием межмодового взаимодействия.

Анализ амплитудно-фазового распределения поля внутри резона--

тора проводился с помощью зонда длиной 3 мм и диаметром 0,1 мм. В ходе измерений зонд ориентировался по направлению вектора поляризации электрического поля, при этом достигалась наибольшая чувствительность измерений.

Для оценки величины потерь в исследуемом резонаторе перепишем (1) в виде

$$\delta_{\rm B} = 2\pi l / (\lambda Q_{\rm H}).$$

Подставляя сюда значения $Q_{\rm H}$ из (2) при различных q для основного типа колебаний, получим значения средних потерь по мощности этого типа колебаний (рис. 3, сплошная линия). По оси абсцисс на рис. 3 отложены значения числа Френеля $N=a^2/(l\lambda)$ (a — апертура зеркала). Видно хорошее совпадение с расчетами, приведенными в [5] (пунктирная линия). Некоторое возрастание величины потерь при малых N объясняется значительной утечкой энергии через отверстия связи в зеркалах, служащие в рабочем режиме для ввода и вывода электронного пучка. Радиус отверстия связи был порядка $\lambda/2$.

Наличие таких отверстий приводит прежде всего к уменьшению добротности основных типов колебаний. Кроме того, как показал эксперимент, вблизи отверстия распределение поля типов колебаний TEM₀₀, TEM₀₁, TEM₀₂ существенно искажается. Ближе к центру резонатора картина, характерная для распределения поля этих колебаний, восстанавливается. Для колебаний типа TEM₁₀ влияние отверстия значительно слабее, так как максимум поля для него сдвинут относительно центра зеркала. Следовательно, вырождение типов колебаний при наличии отверстий в зеркалах может частично сниматься.

Измерение распределения интенсивности пучка за выходным зеркалом как в ближней, так и в дальней зонах показало, что в центральном максимуме сконцентрировано около 90% всей энергии излучения.

В ходе исследований изменялась ориентация полос решетки относительно направления вектора поляризации. Наиболее четко гауссовская структура пучка выявлялась при падении на решетку **Н**-поляризованной волны, когда падающая волна с минимальными потерями проходит во внешний тракт.

Угловая расходимость пучка при $\lambda = 7,2$ мм и a = 15 мм составляла $\theta < 0,3$ рад.

Таким образом, проведенные исследования показали, что при наличии боковых проводящих стенок в резонаторах типа Фабри — Перо наблюдается возбуждение типов колебаний, характерных для открытых резонаторов, их добротность в таком случае возрастает в 5÷10 раз (см. рис. 2). Введение отверстий связи значительного размера способствует селекции ряда низших типов колебаний. Дифракционная решетка на одном из зеркал играет роль поляризационного фильтра и может быть полезной при экспериментальном подборе оптимального коэффициента обратной связи.

СПИСОК ЛИТЕРАТУРЫ

[1] Королев Ф. А., Курнн А. Ф. Радиотехн. и электроника, 1970, 15, с. 1869. [2] Vomvoridis J. L., Sprangle P. Phys. Rev. A, 1982, 25, р. 931. [3] Вертий А. А., Церкач В. Н., Попенко Н. А., Шестопалов В. П. Укр. физ. журн., 1978, 23, с. 1666. [4] Валитов Р. А. и др. ЖЭТФ, 1964, 47, с. 1173. [5] Тsuji М., Shigesawa H., Takiyama K. Appl. Opt., 1979, 18, р. 1334.

Поступила в редакцию 06.07.84

4*