ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 4

УДК 537.312.62

РЕЗОНАТОР НА ОТРЕЗКЕ ЛИНИИ ПЕРЕДАЧИ В ВЫСОКОЧАСТОТНОМ СКВИДЕ

В. А. Крысанов

(кафедра физики колебаний)

Повышение частоты смещения ведет к возрастанию чувствительности и расширению полезной полосы пропускания флюксметра на одноконтактном гистерезисном сквиде [1—3]. В стандартной технике сквидов промежуточный контур включает в себя емкость отрезка ВЧ-кабеля, подключенного к неохлаждаемому предварительному усилителю (ПУ), что затрудняет использование частот выше 30 МГц. Эффективная шумовая температура T_{κ} и затухание такого контура возрастают с повышением резонансной частоты [4], ограничивая энергетическое разрешение прибора $\delta \varepsilon$ уровнем $\sim 10^{-28}$ Дж/Гц, что достаточно, однако, для большинства применений сквидов.

В данной работе предлагается использовать в качестве контура сквида резонатор на отрезке линии передачи с сосредоточенными элементами на концах. Это позволяет существенно повысить рабочую частоту прибора, содержащего упомянутый выше отрезок кабеля. Такое схемное решение и приводимые ниже расчетные соотношения могут быть использованы в случае применения криогенного ПУ на ультравысоких частотах смещения, для которых затруднена реализация сосредоточенных контуров, а также при необходимости тепловой [3] или механической [5] развязки криогенных датчика и ПУ.

Резонатор на линии передачи. a — Схема включения; L_s — индуктивность кольца сквида, L_c — индуктивность сосредоточенной катушки связи; k_{θ} — коэффициент связи между L_c и L_s ; R_p — приведенное сопротивление потерь резонатора, $R_{\rm BX}$ н $C_{\rm BX}$ — активная и емкостная составляющие входного импеданса предусилителя; Z_0 — реактивный элемент, предназначенный для изменения частоты резонанса; E_N — эквнвалентная шумовая эдс предусилителя; I_N — суммарный ток, обусловленный тепловым шумом резонатора и токовым шумом предусилителя, $I_{\rm H}$ — ток ВЧ-смещения. δ — Эпюры распределений амплитуд напряжения по длине резонатора

Схема составного резонатора представлена на рисунке, а. Из теории длинных линий известно, что распределение амплитуд напряжений и токов по длине линии можно получить, заменив реактивные элементы на концах короткими ($<\lambda/4$) ее отрезками с длинами Δl_L , Δl_C . По данному распределению определяются соответствующие коэффициенты включения. Номер моды колебаний *n* может быть определен как число четвертьволновых ($\lambda/4$) отрезков, укладывающихся на электрической длине резонатора l_s . Нечетные *n* реализуются при малой индуктивной или емкостной проводимости Z_0 , четные — при большой проводимости (значительная емкость, малая индуктивность L_0). Использование промежуточных значений реактивности Z_0 позволяет осуществлять широкодиапазонную перестройку частоты резонанса. Эпюры распределений напряжений для n=1, 2, 3 приведены на рисунке, б.

На входных зажимах ПУ резонатор представляется эквивалентным контуром $L_{9}C_{9}$, для которого справедливо соотношение [6]

$$\rho_{9} \equiv (L_{9}/C_{9})^{1/2} = 4\rho_{\pi}/(\pi n), \qquad (1)$$

где од — волновое сопротивление линии.

Крутизна преобразования Γ_{Φ} вариации магнитного потока в кольце в приращение амплитуды напряжения на входе ПУ может быть рассчитана двумя методами. Прямой метод состоит в вычислении ВЧ-напряжения на L_c и пересчете его трансформации на входе ПУ через коэффициенты включения. Этот метод позволяет перейти к стандартной форме выражения для Γ_{Φ} :

$$\Gamma_{\Phi} = (1-\alpha) \left(\rho_{\mathfrak{I}} \omega / L_{\mathfrak{I}} \right)^{1/2} / k_{\mathfrak{I}}, \qquad (2)$$

где α — наклон плато [4], k₅ — эквивалентный коэффициент связи L₃ с L_c, определяемый соотношением

$$k_{2}^{2} = k_{0}^{2} \left[\frac{4}{(\pi n)} \right] L_{c} \omega / \rho_{\pi}.$$
(3)

Данный метод неудобен для практических расчетов, так как, в частности, условие применимости соотношений (1), (3), Δl_c , $\Delta l_L \ll \lambda/4$, как правило, не выполняется. Второй, формализованный метод прогнозирования Г ϕ состоит в использовании значений параметров в (2), измеренных по соответствующим методикам.

Выражение для $\delta \varepsilon$, оптимизированное по $k_{\mathfrak{s}}$, имеет вид

$$\delta \varepsilon = \alpha j_C \left(S_E S_I \right)^n / \left[4 \left(1 - \alpha \right)^2 f \right]. \tag{4}$$

Здесь $f = \omega/(2\pi)$; $S_E(f)$, $S_I(f)$ — спектральные плотности источников E_N и I_N в предположении их некоррелированности; j_C — параметр [4], характеризующий диссипацию энергии в криогенном датчике. Выражение (4) совпадает с аналогичным в работе [4] при введении температуры T_{κ} :

$$T_{\mathrm{R}} = S_{\mathrm{I}} \rho_{\mathrm{P}} Q / (4\varkappa), \qquad (5)$$

где Q — добротность контура, « — постоянная Больцмана.

Для оптимального коэффициента связи k_{opt} и эффективной добротности контура Q_{eff} использовались соотношения

$$k^{2}_{\text{opt}} = (\pi/4) a j_{c} \rho_{\vartheta} (S_{I} S_{E})^{1/2}, \qquad Q_{\text{eff}} = a \pi j_{c} / (4k_{\vartheta}^{2}), \qquad (6)$$

отличающиеся от аналогичных в [4] на коэффициент 2, появившийся в результате уточнения формулы для длины плато I_{step} . Выражение для Q_{eff} в работе [1] совпадает с (6) в частном случае $j_c=2$, справедливом при $L_s I_0 = \Phi_0$ (I_0 — критический ток контакта, Φ_0 — квант магнитного потока).

Основу флюксметра составил криогенный датчик циммермановского типа с $L_s=0,4$ нГ, $I_0=6$ мкА при 7 К и сопротивлением контакта 0,7 Ом, изготовленный Б. В. Васильевым. В резонаторе использовался отрезок кабеля РК-75-1-22 длиной 0,9 м. Входной каскад ПУ имел коэффициент усиления по напряжению $K_1 = 3$. В нем использовались транзистор КПЗ12 и сменные контуры в нагрузке. Проходная емкость транзистора обусловила зависимость добротности резонатора от расстройки нагрузочного контура. Указанное свойство схемы определило выбор тока I_N для характеристики шума контура, оно учитывалось при измерении S_1 и настройке прибора. Основное высокочастотное усиление в схеме обеспечивалось специально изготовленным широкополосным усилителем или селективным микровольтметром BN15231 в режиме преобразования частоты.

u	<i>f</i> , МГц	р _э , Ом	00 00	R _{BX} , KOM	S _E 10 ¹⁶ , B²/Γμ	S _I • 10 ²⁴ , A ² /fu	ಕ	lc	^k opt	e a	Δ <i>U</i> , MKB	бе-1029 Дж/Гц	δε _п .1029, Дж/Гц	δε _{эксп} .10 ²⁹ , Дж/Гц
1	39	99	49	35	4,8	2,7	0,38	1,1	0,15	0,20	21	2,3	$2,6 \\ 5,4 \\ 3,4$	1,1
2	76	12	68	10	4,0	21	0,37	1,3	0,10	0,17	12	3,9		1,7
3	103	32	45	6	4,0	12	0,41	1,2	0,15	0,22	11	2, 3		1,6

В таблице сведены результаты испытаний флюксметра в трех режимах ($L_0 = 90$ нГ для n = 2) и результаты предварительных расчетов. Оценки $R_{\rm BX}$ соответствуют величинам добротности резонатора Q_0 , измеренным при $K_1 \approx 0.1$ в отсутствие криогенного датчика. Для определения о, к контуру подключался калиброванный конденсатор. Расчетные значения $\delta arepsilon_{ ext{En}}$ соответствуют использованным значениям $k_{ ext{an}}$ выбранным из условия $k_{s^2}Q_0 \approx 2$. Заметное различие между k_{opt} и k_s связано с заниженными экспериментальными значениями іс — параметра, вносящего основную погрешность в прогноз чувствительности. В таблице ΔU реализованный размах сигнальной характеристики сквида (амплитудное значение на входе ПУ). Из измерений напряжений сигнала и спектральной плотности шума на частоте 1 кГц определялось значение порогового магнитного потока $\Delta \Phi$ в единичной полосе частот. Измерения проводились на выходе линейного детектора в рабочей точке, соответствующей середине линейного участка треугольной сигнальной характеристиќи сквида. Величина безкси определялась по формуле $\delta \epsilon_{3KCI} =$ $= (\delta \Phi)^2/(2L_s)$ с точностью ~25%. Отличие $\delta \epsilon_{3\kappa c \pi}$ от $\delta \epsilon_{\pi}$ может быть объяснено также помехами электромагнитного и вибрационного происхождения.

Таким образом, в соответствии с соотношениями (1), (4), (5), повышению чувствительности флюксметра препятствует уменьшение сопротивления ρ_3 с увеличением частоты накачки ($T_{\kappa} \approx 300$ K для $n = = 1 \div 3$). Прогнозируемые значения бе для стандартной схемы использования отрезка кабеля с параметрами f = 20 МГц, $\rho_3 = 60$ Ом, $Q_0 = 150$ и, например, для режима n = 1 отличаются незначительно. Это обусловлено главным образом относительно малой добротностью составного резонатора. С другой стороны, снижение этой добротности приводит к дополнительному расширению полосы рабочих частот прибора [2].

Автор выражает признательность Б. В. Васильеву, О. В. Снигиреву, В. Н. Руденко за ценные консультации и внимание к работе.

СПИСОК ЛИТЕРАТУРЫ

[1] Кларк Дж. В кн.: Слабая сверхпроводимость. Пер. с англ. под ред. В. В. Шмидта. М.: Мир, 1980, с. 7. [2] Данилов В. В., Лихарев К. К. Радиотехн. и электроника, 1980, 25, с. 1725. [3] Long A. P., Clark T. D., Prance R. J.,

54

Richards M. G. Rev. Sci. Instrum., 1979, 50, р. 1376. [4] Jackel L. D., Burhan an R. A. J. Low Temp. Phys., 1975, 19, N 3/4, р. 201. [5] Крысанов В. А., Руденко В. Н. Приб. и техн. эксперимента, 1984, № 3, с. 199. [6] Волгов В. А. Детали и узлы РЭА. М.: Энергия, 1977, с. 382.

Поступила в редакцию 29.10.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 4

.УДК 537.525.1

ФАКТОР ЭНЕРГЕТИЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОНА В РАЗРЯДЕ НИЗКОГО ДАВЛЕНИЯ В ПАРАХ ЩЕЛОЧНЫХ МЕТАЛЛОВ

А. М. Девятов, Т. Н. Соловьев

(кафедра электроники)

Неослабный интерес к изучению плазмы щелочных металлов связан с ее применением в устройствах прямого преобразования тепловой энертии в электрическую (МГД-генераторы, термоэмиссионные преобразователи и др.). Одной из важных характеристик плазмы является фактор энергетических потерь электрона, определяющий такие основные параметры плазмы, как электронная температура и удельная электропроводность. Ранее фактор энергетических потерь электрона в парах щелочных металлов измерен Сугаварой и Ченом [1], которые исследовали положительный столб низковольтного дугового разряда в парах цезия при давлениях 0,006—0,08 Тор. Для определения экспериментального фактора энергетических потерь электрона они использовали известную формулу, связывающую электронную температуру с напряженностью продольного электрического поля [2]:

$$V_e = 0.63 \frac{\lambda_e E}{\sqrt{\kappa_e}}$$
,

где λ_e — средняя длина свободного пробега электрона, κ_e — фактор энергетических потерь электрона, равный средней доле энергии, теряемой электроном при одном соударении. Нами использовано это же соотношение в разряде в парах натрия, калия, рубидия и цезия в условиях предыдущего эксперимента [3] (таблица).

Элемент	<i>p</i> ·10³, Top	V _е , эВ	Е, В/см
Натрий	2—22 0,6—7,6 0,7—4,7 0,4—1,1	0,6—1,5 0,5—1,8 0,5—1,3 0,6—1,3	$\begin{array}{c} 0,3-1,4\\ 0,2-0,7\\ 0,2-0,6\\ 0,2-0,3 \end{array}$

Для нахождения средней длины свободного пробега электрона мы пользовались экспериментальными величинами полного сечения рассеяния электронов на атомах калия, рубидия, цезия [4] и натрия [5]. Найденные по формуле (1) величины фактора энергетических потерь представлены на рисунке темными точками.

С другой стороны, как это сделано в [1], принимая во внимание упругие и неупругие удары первого и второго родов электронов с атомами и ионами, фактор энергетических потерь можно рассчитать. Подробный анализ баланса энергии электронов, проведенный одним из нас

(1)