как здесь становится возможным наблюдение квазирезонансного характера светового отклика инжекционного лазера. При этом глубина модуляции оптического излучения оказывается зависящей от частоты гармонического сигнала ω при неизменных величинах постоянной составляющей тока накачки I_0 и глубины модуляции тока накачки лазера. На некоторой частоте $\omega_{\rm M}$, называемой квазирезонансной, глубина модуляции излучения достигает максимума. Анализ простейшей теоретической модели [5] дает следующее значение для частоты $\omega_{\rm M}$:

$$\omega_{\rm M}^2 = \frac{n}{\tau_e \tau_{\rm \Phi}} \left(I_0 / I_{\rm nop} - 1 \right) - \frac{1}{2\tau_e^2} \left[n (I_0 / I_{\rm nop} - 1) + 1 \right]^2,$$

где τ_e , τ_{ϕ} — времена жизни электронов и фотонов соответственно, $\tau_{\phi} \infty 10^{-11} \div 10^{-12}$ с для инжекционных лазеров, $n = 1 \div 3$.

Квазирезонанс также можно получить, изменяя постоянную составляющую тока накачки I_0 при заданной частоте модуляции ω_0 . Тогда значение постоянной составляющей $I_{0 \text{ макс}}$, при котором достигается максимальная глубина модуляции излучения, приближенно выражается формулой

$$I_{0 \text{ make}} = I_{\text{nop}} \left(1 + \frac{\tau_{\phi} \tau_{e}}{n} \omega_{0}^{2} + \frac{\tau_{\phi}}{n \tau_{e}} \right).$$

СПИСОК ЛИТЕРАТУРЫ

[1] Кейси Х., Паниш М. Лазеры на гетероструктурах. Т. 2. М.: Мир, 1981. [2] Елисеев П. Г. Введение в физику инжекционных лазеров. М.: Наука, 1983. [3] Логгинов А. С., Семянистый А. В., Соловьев В. Е., Юльбердин Ю. Ф. Квант. электроника, 1978, 5, с. 2060. [4] Дьяконов В. П. Лавинные транзисторы и их применение в импульсных устройствах. М.: Сов. радио, 1973. [5] А d a m s M. J. Opto-Electronics, 1973, 5, N 2, p. 201.

Поступила в редакцию 01.10.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 5

УДК 533.951

возбуждение страт в разрядной трубке конической формы

Б. П. Александров, П. С. Ланда, Б. Н. Швилкин

(кафедра электроники)

1. Возбуждение ионизационно-диффузионных волн (страт) в положительном столбе газового разряда постоянного тока представляет собой крайне нежелательное явление. В качестве одного из способов подавления страт в работе [1] было предложено применение разрядных трубок нецилиндрической формы. При использовании конических разрядных трубок с небольшими углами раствора $\alpha \simeq 0,03 - 0,07$ авторами работы [1] экспериментально обнаружено значительное сокращение области существования страт по току и давлению. В настоящей работе проведена попытка теоретического объяснения особенностей возбуждения страт в таких трубках для области больших токов. В этой области справедливо гидродинамическое описание страт, причем в случае цилиндрической трубки теория хорошо согласуется с экспериментом [2, 3].

2. Рассмотрим положительный столб разряда в трубке с медленно меняющимся вдоль оси радиусом R(x). Ось x направим от катода к аноду. Будем рассматривать задачу в одномерном приближении без учета радиальной неоднородности плазмы (в гидродинамическом приближении это не приводит к большим ошибкам [4]). Исходные уравнения для концентрации электронов n, температуры электронов в электронвольтах T и продольной компоненты электрического поля E_x имеют вид [5]

$$\frac{\partial n}{\partial t} - D_{a} \frac{\partial^{2} n}{\partial x^{2}} - \mu_{i} \left((1 + \gamma_{1}) \frac{\partial n}{\partial x} \frac{\partial T}{\partial x} + \gamma_{1} n \frac{\partial^{2} T}{\partial x^{2}} \right) = n \left(Z (n, T) - \frac{1}{\tau'} \right),$$

$$e \gamma_{0} \frac{\partial}{\partial x} \left(\mu_{e} n T \frac{\partial T}{\partial x} \right) = \left(\zeta \frac{\partial T}{\partial x} - E_{x} \right) j + enH(n, T), \quad (1)$$

$$E_{x} = \frac{ji}{en\mu_{e}} + \frac{T}{n} \frac{\partial n}{\partial x} + \gamma_{1} \frac{\partial T}{\partial x},$$

$$\mathcal{E} = IR_{i} + \int_{0}^{L} E_{x} dx.$$

Здесь μ_e , μ_i — подвижности электронов и ионов; $D_a = \mu_i T$ — коэффициент амбиполярной диффузии; Z(n, T) — эффективная частота ионизации; H(n, T) — энергия, теряемая электроном в единицу времени при столкновениях; ζ , γ_0 , γ_1 — кинетические коэффициенты, зависящие от функции распределения электронов по энергиям; $I = = j(x)\bar{s}(x)$ — полный ток, протекающий через трубку; j — плотность тока на оси трубки; \mathcal{E} — эдс источника питания; R_i — его внутреннее сопротивление; L — длина трубки; $\tau'(x)$ — время жизни электронов, обусловленное диффузией на стенки; \bar{s} — эффективное сечение трубки.

В стационарном состоянии концентрация $n_0(r, x)$, температура $T_0(x)$ электронов, поле $E_0(x)$, а также $Z_0(x)$, $H_0(x)$, $\tau_0'(x)$ являются слабо зависящими от x функциями. Чтобы получить точное решение для стационарного состояния, необходимо решить систему уравнений (1) при $\partial n/\partial t = 0$ с заданными граничными условиями. Решение такой задачи в общем виде достаточно сложно. Будем предполагать, что продольная неоднородность плазмы мала, так что стационарное состояние разряда в каждой точке мало отличается от случая цилиндрической трубки радиуса R(x). Поэтому в первом приближении для концентрации электронов вблизи оси, пренебрегая зависимостью частоты ионизации от концентрации, имеем

$$n_0(r, x) = n_0(x) J_0\left(\frac{\beta r}{R(x)}\right), \qquad (2)$$

где $J_0(x)$ — функция Бесселя нулевого порядка, $\beta = 2,4$. Стационарная температура электронов и электрическое поле определяются из уравнений

$$Z_0(T_0(x)) = (\beta/R(x))^2 \mu_i T_0(x), \qquad (3)$$

$$E_{xj}(x) = en_0 H(T_0(x)).$$
 (4)

Из системы уравнений (1) следует ограничение на характерный размер неоднородности стационарного состояния $L_{\rm H}$:

 $L_{\rm H} \gg \max\{T_0(x)/E_0(x), R/\beta, K^{-1}\},\$

где K — волновой вектор распространяющейся в плазме волны. Для случая конической трубки с раднусом $R(x) = R_0 + \alpha x$ $L_{\rm H} \sim R_0/\alpha$. На угол раствора конуса при этом налагается ограничение:

$$\alpha \ll \min\left\{\beta, \frac{E_0R_0}{T_0}, KR_0\right\}.$$
 (5.)

-2.00

3. Будем рассматривать разряд в инертных газах. Для исследования условий самовозбуждения страт линеаризуем уравнения (1) относительно малых отклонений от стационарного состояния. Пренебрегая зависимостью *H* от концентрации электронов, запишем эти уравнения в безразмерных переменных

$$N = \frac{n - n_0}{n_0}, \ U = \frac{T - T_0}{T_0}, \ J = \frac{j - j_0}{j_0}, \ \xi = \frac{E_0(0)}{T_0(0)} x, \ \tau = \frac{\mu_i E_0^2(0)}{T_0(0)} t.$$

С точностью до членов порядка $L_{\rm H}^{-1}$ они имеют вид

$$\frac{\partial N}{\partial \tau} - \eta_T \left(\xi\right) U = \frac{\partial^2 N}{\partial \xi^2} + \gamma_1 \frac{\partial^2 U}{\partial \xi^2} + \eta_n \left(\xi\right) N,$$

$$\frac{\gamma_0}{\varphi\left(\xi\right)} \frac{\partial^2 U}{\partial \xi^2} + \frac{\partial N}{\partial \xi} = \alpha_0 \frac{\partial U}{\partial \xi} + 2\varphi\left(\xi\right) \left(N - J\right) + h_T \left(\xi\right) U,$$

$$J = \frac{1}{\left(R + R_i\right) I} \left\{ \int_0^I \frac{j_0}{e n_0 \mu_{e_0}} \left(N + \mu_{e_T} U\right) d\xi - T_0 \left(N + \gamma_1 U\right) \right\}_0^I \right\}.$$
(6)

Здесь

$$\begin{split} \eta_{T}(\xi) &= \frac{\beta^{3}T_{0}(\xi) T_{0}(0)}{R^{2}(\xi) E_{0}^{2}(0)} \left(\frac{T_{0}(\xi)}{Z_{0}(\xi)} \left(\frac{\partial Z}{\partial T} \right)_{T_{0}, n_{0}} - 1 \right), \\ \eta_{n}(\xi) &= \frac{\beta^{2}T_{0}(\xi) T_{0}(0) n_{0}(\xi)}{R^{2}(\xi) E_{0}^{2}(0) Z_{0}(\xi)} \left(\frac{\partial Z}{\partial n} \right)_{T_{0}, n_{0}}, \\ \mu_{eT}(\xi) &= \frac{T_{0}(\xi)}{\mu_{e0}(\xi)} \left(\frac{\partial \mu_{e0}}{\partial T} \right)_{T_{0}, n_{0}}, \quad \varphi(\xi) &= \frac{E_{0}(\xi) T_{0}(0)}{T_{0}(\xi) E_{0}(0)}, \\ h_{T}(\xi) &= \varphi(\xi) \left(\mu_{eT} + \frac{T_{0}(\xi)}{H_{0}(\xi)} \left(\frac{\partial H}{\partial T} \right)_{T_{0}, n_{0}} \right), \\ \alpha_{0} &= \zeta - \gamma_{1}, \ R &= \frac{1}{I} \int_{0}^{L} E_{x} dx \quad - \text{ сопротивление разряда постоянному току, } \end{split}$$

 $l = LE_0(0)/T_0(0)$ — безразмерная длина трубки.

Граничные условия для простоты выберем в виде [5]

$$N(0, t) = N(l, t) = U(0, t) = U(l, t) = 0.$$
 (6a)

В отличие от случая цилиндра [5] содержащиеся в системе уравнений (6) параметры являются слабо зависящими от ξ функциями. В дальнейшем ограничимся предельным случаем источника с бесконечно большим внутренним сопротивлением, когда можно пренебречь колебаниями тока в цепи, а следовательно, и обратной связью через внешнюю цепь. Решение системы (6) ищем методом, близким к методу ВКБ в первом приближении по параметру L_{μ}^{-1} . Поскольку в инертных газах $\eta_T \gg 1$ [5], то для исследования системы уравнений (6) введем малый параметр $\varepsilon = \eta_T (0)^{-1/4}$. Решение ищем методом последовательных приближений в виде асимптотического разложения по малому параметру ε [6]:

$$N = \exp\left[\rho\tau + \int_{0}^{\xi} k\left(\xi\right) d\xi\right] \sum_{m=0}^{\infty} \varepsilon^{m} n^{(m)}\left(\xi\right),$$

3*

35

$$U = \exp\left[p\tau + \int_{0}^{\xi} k\left(\xi\right) d\xi\right] \sum_{m=0}^{\infty} \varepsilon^{m} u^{(m)}\left(\xi\right), \tag{7}$$

где p — безразмерная частота. Известно [5], что вблизи верхней по току границы самовозбуждения страт справедливы оценки $\eta_n \sim \varepsilon^{-2}$, $h_T \sim \varepsilon^{-1}$, $p \sim \varepsilon^{-3}$, $U \sim \varepsilon N$. С учетом этого из (6), (7), приравнивая члены при одинаковых степенях ε , найдем неизвестные функции $n^{(m)}(\xi)$, $u^{(m)}(\xi)$. Так же, как и в случае цилиндра [5], получаем решение для бегущих страт в виде суммы двух волн с волновыми числами $k \sim 1$ и $k \sim \varepsilon^{-1}$:

$$N = e^{\rho\tau} \left\{ C_1 \exp\left[\int_0^5 \left(2\varphi + \frac{ph_T}{\eta_T}\right) d\xi\right] + C_2 \exp\left\{-\int_0^5 \left[\frac{\eta_T \varphi}{\rho \gamma_0} + \eta_T \varphi \left(\eta_n + \frac{\varphi^2 \eta_T^2}{\gamma_0^2 \rho^2}\right)\right) (\gamma_0 \rho^2) + \frac{p}{\eta_T} \left(h_T - \alpha_0 \frac{\varphi \eta_T}{\gamma_0 \rho}\right) + 2\varphi\right] d\xi \right\},$$

$$U = (p/\eta_T) N.$$
(8)

Как показано в [7], отношение амплитуды двух других волн с волновыми числами $k \sim \varepsilon^{-1.5}$ к амплитуде рассмотренных выше волн порядка ε . Для получения условия существования бегущих страт эти волны можно не учитывать. При этом достаточно рассматривать только два граничных условия:

$$N(0, t) = N(l, t) = 0.$$
(9)

Из (9) с учетом (8) находим собственные частоты вблизи границы самовозбуждения $p_n = \delta_n + i\omega_n$:

$$\dot{\omega}_n = (-\pi n + \sqrt{(\pi n)^2 + 2df})/2d + O(\varepsilon^{-2}) \sim \varepsilon^{-3},$$

$$\delta_n = (b - c/\omega_n^2 - a\omega_n^2) f^{-1} + O(\varepsilon^{-1}) \sim \varepsilon^{-2}.$$

Здесь

$$a \equiv \left(4 - \frac{\alpha_0}{\gamma_0}\right) \int_0^t \varphi \, d\xi, \quad b \equiv \int_0^t \frac{\eta_T \eta_n}{\gamma_0} \, d\xi,$$
$$c \equiv \int_0^t \frac{\eta_T^3 \varphi^3}{\gamma_0^3} \, d\xi, \quad d \equiv \int_0^t \frac{\eta_T \eta_n \varphi}{\gamma_0} \, d\xi, \quad f \equiv \int_0^t \frac{\eta_T \varphi}{\gamma_0} \, d\xi.$$

Максимальное значение временного инкремента бо достигается при

$$\omega_0 = (c/a)^{1/4},\tag{10}$$

причем $\delta_0 = (b - 2\sqrt{ac}) f^{-1}$. В системе устанавливается частота ω_n вблизи ω_0 , при которой временной инкремент максимален. Условие самовозбуждения страт в инертных газах в области больших токов принимает вид

$$b \geqslant 2\sqrt{ac}$$
 (11)

При α=0 формулы (10), (11) переходят в соответствующие формулы для цилиндра. Заметим, что без учета обратной связи через внешнюю цепь частота, временной инкремент и граница самовозбуждения не зависят в явном виде от длины конуса, а зависят только от малого и большого радиусов торцов. Это объясняется тем, что пространствена ное усиление основной (распространяющейся от катода к аноду) волны с волновым числом $k \sim \varepsilon^{-1}$ на всей длине трубки равно затуханию встречной волны с точностью до членов более высокого порядка малости, в результате чего «эффективность» обратной связи нечувствительна к длине трубки (случай глобальной неустойчивости [8]).

4. На рис. 1 показаны рассчитанные по формуле (11) значения верхних граничных токов Ігр для существования

страт в аргоновой плазме в зависимости от радиуса большого торца конуса R при различных фиксированных значениях радиуса малого торца R_0 для давления p=0,5 Тор. Необходимые параметры разряда определялись по результатам работы [3]. Расчеты производились для

Рис. 1. Верхний граничный ток в конусах в зависимости от радиуса большого торца R в аргоне для трех значений радиуса малого торца $R_0 = 1,5, 2$ и 2,5 см. Пунктирная кривая — граничный ток для цилиндрических трубок. Давление газа p=0,5 Тор

трубок с радиусами в интервале от 1 до 5 см, когда применимы результаты работы [3]. При этом правая часть (5) порядка единицы, и условие (5) хорошо выполняется для конусов с длиной $L \ge 50$ см, когда $\alpha < 0,1$. Как видно из рис. 1, при учете обратной связи через встречную волну в конических трубках с небольшими углами раствора достигается существенное снижение верхнего граничного тока по сравнению с цилиндрическими трубками, радиус которых заключен в интервале от R_0 до R.

Стабилизирующее действие конуса можно понять из качественного рассмотрения поведения страт в цилиндрах, можно заменить конус. На рис. 2 изображено рассчитанное по формуле (10) значение оптимальной частоты страт $f_0 = 1,03$ кГц в конусе с радиусами торцов $R_0 = 1,5$ и R = 3,5 см при давлении p = 0,5 Тор и граничном для данного конуса токе I_{rp}= =0,40 А. Там же показана зависимость опти-

Рис. 2. Зависимость оптимальных частоты $f_{опт}$ и временного инкремента $\delta_{опт}$ страт, инкремента δ при фиксированной частоте страт fo=1,03 кГц в аргоне от радиуса цилиндра при давлении p=0,5 Тор и токе I= =0,40 А. Горизонтальная линия — частота страт fo= =1,03 кГц в конусе с радиусами торцов R₀=1,5 см и R = 3.5 см, для которого $I_{rp} = 0.40$ A

совокупностью которых

Irp, A

2

1,5

1.

0,5

0

L

5 б

R,cm

2

частоты font от радиуса для цилиндрических трубок при мальной тех же значениях тока и давления. Видно, что в конусе устанавливается частота, совпадающая с частотой страт в цилиндре, радиус которого имеет промежуточное значение между радиусами торцов конуса. Для всех остальных цилиндров, составляющих конус, эта частота не является оптимальной. На рис. 2 изображена зависимость от радиуса цилиндра оптимального временного инкремента δ_{оστ} и инкремента δ при фиксированной частоте страт (для наглядности взята частота страт в выбранном нами конусе $f_c = 1,03$ кГц). Из сопоставления кривых видно, что временной инкремент в конусе меньше, чем в любом из составляющих его цилиндров (в нашем случае в конусе $\delta_{ont} = 0$).

Наблюдаемые особенности возбуждения страт должны, по-видимому, сохраняться и для других типов страт, а также при учете обратной связи через внешнюю цепь. В последнем случае можно будет объяснить наблюдаемое на опыте [1] смещение границы существования страт при изменении длины конической трубки с постоянными радиусами торцов.

СПИСОК ЛИТЕРАТУРЫ

[1] Маслова Л. И., Савченко И. А., Швилкин Б. Н. Физика плазмы, 1984, 10, с. 808. [2] Цендин Л. Д. ЖТФ, 1982, 52, с. 635. [3] Wojaczek K. Beitr. Plasmaphys., 1966, 6, N 5, р. 319. [4] Цендин Л. Д. ЖТФ, 1969, 39, с. 1341. [5] Ланда П. С., Мискинова Н. А., Пономарев Ю. В. УФН, 1980, 132, с. 601. [6] Найфэ А. Х. Методы возмущений. М.: Мир, 1976, с. 337. [7] Ланда П. С., Мискинова Н. А., Пономарев Ю. В. УФН, 1980, 132, с. 601. [6] Найфэ А. Х. Методы возмущений. М.: Мир, 1976, с. 337. [7] Ланда П. С., Мискинова Н. А., Пономарев Ю. В. УФН, 1980, 132, с. 601. [6] Найфэ А. Х. Методы возмущений. М.: Мир, 1976, с. 337. [7] Ланда П. С. Автоколебания в распределенных системах. М.: Наука, 1983, с. 195. [8] Лифшиц Е. М., Питаевский Л. П. Физическая кинетика. М.: Наука, 1979, с. 341.

Поступила в редакцию 08.10.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1985, Т. 26, № 5

УДК 537.867:53.092

ВОЗДЕЙСТВИЕ МЕХАНИЧЕСКОГО ДАВЛЕНИЯ НА СВЧ Диэлектрические резонаторы из танталата калия

Г. В. Белокопытов, И. В. Иванов, Н. Е. Лебедев, А. А. Харин

(кафедра физики колебаний)

Виртуальный сегнетоэлектрик танталат калия при охлаждении вплоть до 0 К не переходит в сегнетофазу [1]. Однако эксперименты [2,3] показали, что диэлектрические свойства КТаО₃ существенно зависят от одноосного механического давления σ , причем при $\sigma > 5,2 \cdot 10^9$ дин/см² наблюдался переход в сегнетофазу. Измерения зависимости $\varepsilon(\sigma)$ на частотах 1—100 кГц позволили найти коэффициенты электрострикции Q_{Ab}. Если в разложении свободной энергии стрикционный член представляется в виде — Q_{Ab} $\sigma_{\lambda}(PP)_{\mu}$, то, в частности, Q₁₂=-(2,5-2,9) · 10⁻¹³ СГС [2,3].

завленяющи Q_{Aµ}. Если в разложении свободной энергии стрикционный член представляется в виде — Q_{Aµ}σ_A(PP)_µ, то, в частности, Q₁₂=--(2,5--2,9)·10⁻¹³ СГС [2,3]. Нами проведены СВЧ-измерения диэлектрической проницаемости и потерь КТаО₃ методом диэлектрического резонатора (ДР) под давлением. Несмотря на усложнение техники эксперимента, эта методика имеет существенные достоинства. Она позволяет исключить систематические ошибки, связанные с нанесением электродов на кристалл, и ослабить влияние поверхностного слоя на результаты измерений. Известно, что диэлектрические, упругие и электромеханические характеристики поверхностного слоя КТаО₃ существенно отличаются от объемных, в частности в нем возникает пьезоэффект [4,5], отсутствующий в однородной среде с центром инверсии. В связи с этим сопоставление результатов низкочастотных и СВЧ-измерений коэффициентов электрострикции весьма желательно. Одновременное измерение добротности ДР дает возможность изучать зависимость потерь от давления; эта информация полезна для выяснения механизмов диссипации энергии в сегнетоэлектриках.

возбуждение в них электромагнитных колебаний на низших *H*- и *E*-модах. Давления и возбуждение в них электромагнитных колебаний на низших *H*- и *E*-модах. Давления и возбуждение в них электромагнитных колебаний на низших *H*- и *E*-модах. Давления и возбуждение в них электромагнитных колебаний на низших *H*- и *E*-модах. Давление индуцировало диэлектрическию в потокого и давления и возбуждение в них электромагнитных колебаний на низших *H*- и *E*-модах. Давление индуцировало диэлектрическию в потокого и возбуждение в них электромагнитных колебаний на низших *H*- и *E*-модах. Давление индуцировало диэлектрическию в потокоги, перпендикулярной оси давления, поток колебаний изменялись по разным законам. Электрическое поле основной осесимметричной моды H_{010} лежало в плоскости, перпендикулярной оси давления, поэтому резонансная частота моды f_H определялась лишь одной компонентой диэлектрической проницаемости $f_H \sqrt{\varepsilon_L}$ =const. В случае, когда давление приложено в кристаллографическом направлении [100], справедлива формула

$$4\pi \varepsilon_{\perp}^{-1}(\sigma) = 4\pi \varepsilon^{-1}(0) + 2Q_{12}\sigma \quad [3]. \tag{1}$$