УДК 535.343:539.184

ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ ПОЛЯРИЗАЦИОННЫХ. И КОРРЕЛЯЦИОННЫХ ХАРАКТЕРИСТИК ПРЯМОЙ ФОТОИОНИЗАЦИИ ЗР-состояния атома натрия

В. В. Балашов, А. Н. Грум-Гржимайло, Б. Жадамба (Монголия)

(НИИЯФ)

Применение синхротронного излучения для фотононизации возбужденных атомов позволяет изучать такие процессы в широкой области энергий, включающей высоколежащие автоионизационные состояния. Первое применение этой методики было реализовано для атомов натрия и бария [1]. Теоретический анализ фотоионизации возбужденных атомов в области автоионизационных резонансов мы начинаем в данной работе с изучения прямых переходов в прилегающий к автоионизационным состояниям континуум при ионизации $3P_{1/2}$, $_{3/2}$ уровней натрия. Экспериментальные результаты, относящиеся к рассматриваемому прямому про-

Экспериментальные результаты, относящиеся к рассматриваемому прямому пропессу, пока ограничиваются данными по полным сечениям ионизации вблизи порога [2]; теоретические расчеты проводились в работах [3-7]. Однако для полной характеристики фотоионизации данных по сечениям фотопоглощения недостаточно, так как этот процесс характеризуется целым набором параметров (см., например, [8-11]). Для полного описания фотоионизации $3P_{1/2}$ -состояния требуется 3 параметра, например дипольные радиальные интегралы для переходов $3p_{1/2} \rightarrow \varepsilon s_{1/2}$ и $3p_{1/2} \rightarrow \varepsilon d_{3/2}$ ($R_{1/2 1/2}$ и $R_{1/2 3/2}$ соответственно) и разность фаз Δ_1 между волновыми функциями $\varepsilon s_{1/2}$ и $\epsilon d_{3/2}$ электрона в континууме ($\Delta_1 = \delta_{1/2} - \delta_{3/2}$). В случае ионизации $3P_{3/2} - \varepsilon d_{3/2}$, $3p_{3/2} - \varepsilon d_{5/2}$ ($R_{3/2 1/2}$, $R_{3/2 3/2}$ и $R_{3/2 5/2}$), а также Δ_1 и $\Delta_2 = \delta_{1/2} - \delta_{5/2}$ — разность фаз между функциями $\varepsilon s_{1/2}$ и $\epsilon d_{5/2}$. В дальнейшем ми в приближении Хартри — Слэтера для возбужденного 3P-состояния. В этой же модели, но с учетом спин-орбитального вазимодействия электронов в континууме были получены волновые функции непрерывного спектра. Исходя из сказанного, положим $R_{1/2 1/2} = R_{3/2 1/2} \equiv R_{1/2}$, $R_{1/2 3/2} = R_{3/2 3/2} \equiv R_{3/2}$, $R_{3/2}$, $R_{3/2 5/2} \equiv R_{5/2}$.

На рис. 1 приведена энергетическая зависимость параметров $R_{1/2}$, $R_{3/2}$ и Δ_1 . Учет спин-орбитального взаимодействия в континууме приводит к незначительному изменению этих величин, и на рис. 1 кривые для $R_{3/2}$, $R_{5/2}$ и Δ_1 , Δ_2 неразличимы. Используя эти параметры, можно получить любую величину, наблюдаемую в эксперименте.

В качестве примера на рис. 2 приведен ряд характеристик фотоэлектронов при ионизации 3*P*-состояния натрия; именно такой набор характеристик был получен в экспериментах [9, 10] по фотоионизации 7*P*-состояния цезия (вблизи порога). На рис. 2, а демонстрируется энергетическая зависимость коэффициента анизотропии β_J, определяющего угловое распределение фотоэлектронов при ионизации неполяризованных 3*P*_J-состояний:

$$\beta_{1/2} = \frac{R_{3/2}^2 - 2R_{1/2}R_{3/2}\cos\Delta_1}{R_{1/2}^2 + 2R_{3/2}^2},$$
(1)

$$\beta_{3/2} = \frac{2}{5} \frac{18R_{5/2}^2 - 2R_{3/2}^2 + 9R_{5/2}R_{3/2}\cos(\Delta_2 - \Delta_1)}{5R_{1/2}^2 + R_{3/2}^2 + 9R_{5/2}^2} - \frac{45R_{1/2}R_{5/2}\cos\Delta_2 - 5R_{1/2}R_{3/2}\cos\Delta_1}{45R_{1/2}R_{5/2}\cos\Delta_2 - 5R_{1/2}R_{3/2}\cos\Delta_1}$$

$$-\frac{43\kappa_{1/2}\kappa_{5/2}\cos\Delta_2-3\kappa_{1/2}\kappa_{3/2}\cos\Delta_1}{5R_{1/2}^2+R_{3/2}^2+9R_{5/2}^2}.$$
 (2)

Наличие переходов в два канала — є и є и является причиной большой анизотропии угловых распределений, в том числе в области расположения автононизационных резонансов. Спин-орбитальное взаимодействие в континууме приводит к незначительному

Рис. 1. Зависимость параметров фотоионизации 3*P*-состояний натрия от энергии фотоэлектрона: радиальные интегралы $R_{1/2}$ (1), $R_{3/2}$ и $R_{5/2}$ (2); разность фаз Δ_{1} и Δ_{2} (3)

Рис. 2. Энергетическая зависимость характеристик прямой фотоионизации $3P_{J}$ -состояний натрия: a — коэффициент анизотроини $\beta_{1/2,3/2}$ с учетом (сплошная кривая) и без учета (пунктир) спин-орбитального взаимодействия в континууме; стрелками указаны положения автононизационных резонансов, доступных возбуждению из 3Pсостояния: $2p^{5}3s(^{1}P)3p^{2}D$ (1), $2p^{5}3s(^{3}P)3d^{2}P$ (2); δ — коэффициенты $d_{1/2}$ (1) и $d_{3/2}$ (2), β — степень $P_{1/2}^{(1)}$ (1) и $P_{3/2}^{(1)}$ (2)

Рис. 3. Полное сечение фотопоглощения на 3*P*-состоянии натрия: 1 — наш расчет; 2 — расчет [6]. На вставке приводится сечение в припороговой области (экспериментальные данные из работы [2])

 $(\sim 10^{-4})$ различню коэффициентов $\beta_{1/2}$ и $\beta_{3/2}$. На рис. 2, б приводится величина d_s , определяющая поляризацию фотоэлектрона $P_s(\bot)$ в направлении, перпендикулярном плоскости реакции:

$$P_{J}^{(\perp)}(\theta) = \frac{d_{J} \mathcal{V}_{2}^{(1)}(\cos \theta)}{1 + \beta_{J} P_{2}(\cos \theta)},$$
(3)

$$d_{1/2} = \frac{2R_{1/2}R_{3/2}\sin\Delta_1}{R_{1/2}^2 + 2R_{3/2}^2},\tag{4}$$

$$d_{3/2} = \frac{R_{1/2}R_{3/2}\sin\Delta_1 - 6R_{1/2}R_{5/2}\sin\Delta_2 - 3R_{3/2}R_{5/2}\sin(\Delta_2 - \Delta_1)}{5R_{1/2}^2 + R_{3/2}^2 + 9R_{5/2}^2}$$
(5)

57

Формулы (3)—(5) записаны для случая ионизации неполяризованного $3P_J$ -состояния линейно поляризованным светом; плоскость реакции определяется направлениями вылета электрона и поляризации света; θ — угол вылета электрона по отношению к направлению этой поляризации. Из рис. 2, б следует, что $P_J(\bot)$ может достигать нескольких десятков процентов. В отсутствие спин-орбитального взаимодействия получаем $d_3/_2 = -(1/2) d_1/_2$.

Селективное заселение подуровней тонкой структуры может приводить к появлению интегральной продольной поляризации у фотоэлектронов при ионизации циркулярно поляризованным светом [12]. На рис. 2, в показана степень этой поляризации $P_J^{(||)}$ при фотоионизации $3P_J$ -состояний:

$$P_{1/2}^{(\parallel)} = \frac{R_{1/2}^2 - R_{3/2}^2}{R_{1/2}^2 + 2R_{3/2}^2},\tag{6}$$

$$P_{3/2}^{(\parallel)} = \frac{1}{10} \frac{63R_{5/2}^2 - 36R_{3/2}R_{5/2} - 2R_{3/2}^2 - 25R_{1/2}^2}{5R_{1/2}^2 + R_{3/2}^2 + 9R_{5/2}^2}.$$
 (7)

Если пренебречь спин-орбитальным взаимодействием в континууме, то между величинами $P_{1/2}^{(\parallel)}$ и $P_{3/2}^{(\parallel)}$ существует связь: $P_{3/2}^{(\parallel)} = -(1/2) P_{1/2}^{(\parallel)}$. При суммировании по компонентам тонкой структуры поляризация электронов пропадает.

На рис. З приведено полное сечение фотоионизации 3*P*-состояния в сравнении с экспериментальными данными в припороговой области [2].

Рисунки 1, 2 и формулы (1)—(7) показывают, что варнации параметров β_J , d_J и $P_J^{(||)}$ оказываются согласованными между собой. Например, если $R_{3/2} = 0$, то пропадает угловая анизотропия фотоионизации ($\beta_{1/2} = 0$, $\beta_{3/2} \approx 0$) и поперечная составляющая поляризации фотоэлектронов $P_J^{(L)}$; наоборот, продольная поляризация $P_J^{(||)}$ при этом условии достигает максимального значения.

Известно, что корреляционные и поляризационные характеристики процесса фотоионизации испытывают резкие вариации в окрестности автононизационных резонансов; теория показывает [13, 14], что характер этих вариаций определяется как свойствами собственно автоионизационных состояний, так и особенностями прямых переходов в прилегающий непрерывный спектр. В следующей работе мы покажем, как исследованные выше закономерности прямой фотоионизации 3P-состояния натрия сказываются на распаде автоионизационных состояний типа 2p⁵3s3p, 2p⁵3p3d и т. п., которые недоступны исследованню в обычных опытах по фотоионизации, но легко возбуждаются при совместном воздействии на атомы натрия синхротронного и лазерного излучений.

СПИСОК ЛИТЕРАТУРЫ

[1] Bizau J. M. et al. In: XIII Int. Conf. on Phys. of Electr. and Atom. Collisions. Abstracts. Berlin, 1983, p. 27. [2] Rothe D. E. J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, p. 49. [3] Burgess A., Seaton M. J. Mon. Not. R. Astron. Soc., 1960, 120, p. 121. [4] Peach G. Mem. R. Astron. Soc., 1967, 71, p. 13. [5] Aymar M. J. Phys. B., 1976, 9, p. 1279. [6] Laughlin C. J. Phys. B., 1978, 11, p. 1399. [7] Manson S. T. et al. In: XIII Int. Conf. on Phys. of Electr. and Atom. Collisions. Abstracts. Berlin, 1983, p. 23. [8] Kollath K. J. Phys. B., 1980, 13, p. 2901. [9] Kaminski H., Kessler J., Kollath K. J. Phys. Rev. Lett., 1980, 45, p. 1161. [10] Kollath K. J. J. Phys. B., 1983, 16, p. L217. [11] Klar H., Kleinpoppen H. J. Phys. B., 1980, 13, p. 933. [12] Cherepkov N. A. Phys. Lett. A, 1972, 40, p. 119. [13] Балашов В. В., Кабачник Н. М., Сажина И. П. Вестн. Моск. ун-та. Физ. Астрон., 1973, 14, с. 733. [14] Каbachnik N. M., Sazhina I. P. J. Phys. B., 1976, 9, p. 1.

Поступила в редакцию 19.04.85