АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 535.42

ФАЗОВЫЕ ХАРАКТЕРИСТИКИ АКУСТООПТИЧЕСКОГО Взаимодействия в брэгговском режиме дифракции

В. И. Балакший, С. Ю. Пентегов

(кафедра физики колебаний)

1. В большинстве работ по дифракции света на акустических волнах основное внимание уделялось расчету амплитуд дифрагированных волн. Однако для решения ряда прикладных задач, особенно в области оптической обработки информации, важно знать не только амплитудные, но и фазовые характеристики акустооптического (АО) взаимодействия. В работе [1] показано, что при большой эффективности взаимодействия проходящая через АО ячейку световая волна (нулевой порядок дифракции) испытывает дополнительный фазовый сдвиг, зависящий от акустической мощности и геометрии взаимодействия. Подобный эффект может при определенных условиях наблюдаться также у дифрагированных волн в максимумах первого и второго порядков.

2. Будем считать, что плоская монохроматическая акустическая волна с круговой частотой Ω и длиной волны Λ распространяется по оси z, заполняя область пространства между плоскостями x = -a и x = l - a. Предполагая решение дифракционной задачи в виде супер-позиции плоских волн с волновыми числами k_p и частотами ω_p :

$$E(x, z, t) = \sum_{p=-\infty}^{\infty} C_p(x) \exp\left[j\left(k_p \cos \theta_p \cdot x + k_p \sin \theta_p \cdot z - \omega_p t\right)\right], \tag{1}$$

из волнового уравнения получим следующую систему уравнений для определения комплексных амплитуд дифрагированных волн C_p [2]:

$$2dC_{p}/dx = q [C_{p-1} \exp(j\eta_{p-1}x) - C_{p+1} \exp(-j\eta_{p}x)].$$
(2)

Здесь $q \approx k_0 \Delta n$, Δn — амплитуда изменения показателя преломления среды под действием акустической волны. Параметр η зависит от направлений распространения дифрагированных воли (углов θ_p):

$$\eta_p = k_p \cos \theta_p - k_{p+1} \cos \theta_{p+1}. \tag{3}$$

3. Обычный брэгговский режим дифракции характеризуется наличием только двух дифракционных максимумов нулевого и первого порядков. Система (2) в этом случае сводится к двум уравнениям и легко интегрируется. Решение имеет вид

$$C_{0}(x) = C^{*} \left[\cos \frac{\varkappa_{0}(x+a)}{2} + j \frac{\eta_{0}(x+a)}{2} \operatorname{sinc} \frac{\varkappa_{0}(x+a)}{2\pi} \right] \exp \left[-j \frac{\eta_{0}(x+a)}{2} \right], \quad (4)$$

$$C_{1}(x) = C^{*} \frac{q(x+a)}{2} \operatorname{sinc} \frac{\varkappa_{0}(x+a)}{2\pi} \exp \left[j \frac{\eta_{0}(x-a)}{2} \right], \quad (5)$$

где C^* — амплитуда падающей световой волны, $\varkappa_0 = V \eta_0^2 + q^2$, sinc(x) = sin $\pi x/(\pi x)$. Комплексный характер соотношений (4) и (5) означает, что в области АО взаимодействия (-a < x < l - a) меняются не

только амплитуды световых волн; возникает также дополнительный фазовый сдвиг.

Рассмотрим сначала волну в первом порядке дифракции. В соответствии с выражением (1)

$$E_1(x, z, t) = C_1(x) \exp[j(k_1 \cos \theta_1 \cdot x + k_1 \sin \theta_1 \cdot z - \omega_1 t)].$$
(6)

Отсюда следует, что при прохождении области взаимодействия дифрагированная волна получает дополнительный набег фазы $\Delta \varphi_1 =$ $= \eta_0 (x+a)/2$. Если угол падения света θ_0 равен углу Брэгга θ_B , $\eta_0 = 0$ и дополнительный фазовый сдвиг отсутствует. Максимальное значение $\Delta \varphi_1$ достигается на краях углового диапазона АО взаимодействия: при $\eta_0 = \pm 2\pi/(x+a)$ имеем $\Delta \varphi_1 = \pm \pi$.

Дополнительный фазовый сдвиг $\Delta \varphi_1$ появляется в результате того, что в области взаимодействия дифрагированная волна имеет постоянную распространения $k_1 = V(k_1 \cos \theta_1 + \eta_0/2) + k_1^2 \sin^2 \theta_1$, отличающуюся от волнового числа k_1 дифрагированной волны в свободном пространстве. Существование такой волны допускается соотношением неопре-

деленностей благодаря конечным размерам области взаимодействия по оси x. В зависимости от геометрии взаимодействия k_1' может быть больше или меньше $k_1 : k_1' > k_1$ при $|\theta_0| < |\theta_B|$ и $k_1' < k_1$ при $|\theta_0| > |\theta_B|$.

Рис. 1. Изменение фазы световых волн при прохождении области АО взаимодействия

Рис. 2. Векторные диаграммы анизотропной брэгговской дифракции для геометрий 0, 1, 2 (a) и -1, 0, +1 (б)

На рис. 1 для случая $|\theta_0| < |\theta_B|$ показано, как меняется фаза дифрагированной волны φ_1' вдоль оси x (ломаная 1-1'). В области взаимодействия $\varphi_1'(x) = [(k_0 \cos \theta_0 + k_1 \cos \theta_1)x - \eta_0 a]/2$. При выходе из области взаимодействия дифрагированная волна меняет скорость распространения и превращается в собственную моду неограниченной диэлектрической среды. Для собственной моды $\varphi_1(x) = k_1 \cos \theta_1 \cdot x$. Эта зависимость показана прямой 2. Разность ординат ломаной 1-1' и нрямой 2 представляет собой фазовый сдвиг $\Delta\varphi_1$.

Прямой 3 на рис. 1 изображена зависимость $\varphi_0(x) = k_0 \cos \theta_0 \cdot x$, определяющая фазу волны нулевого порядка в случае малой эффективности дифракции (когда $C_0 \gg C_1$). При большой эффективности существенную роль играет процесс обратной перекачки световой энергии из первого порядка в нулевой. Вследствие этого зависимость $\varphi_0(x)$

становится более сложной (кривая 4); в нулевом порядке тоже появляется дополнительный набег фазы $\Delta \tilde{\varphi}_0$ [1]. Из (4) имеем, что в выходной плоскости x = l - a

 $\Delta \tilde{\varphi}_0 = \arctan[(\eta_0/\kappa_0) tg(\kappa_0 l/2)] - \eta_0 l/2 + F(\kappa_0 l/2 + 1/2),$ (7)

где $F(y) = m\pi$ при $m \ll y \ll m+1, m=0, 1, 2...$

Следует подчеркнуть принципиальное различие между $\Delta \phi_0$ и $\Delta \phi_1$: сдвиг $\Delta \phi_0$ зависит от мощности акустической волны P_a (поскольку $q \sim \sqrt{P_a}$), тогда как $\Delta \phi_1$ имеет чисто геометрический характер. При соответствующем выборе системы координат сдвиг $\Delta \phi_1$ вообще может быть исключен из рассмотрения. Действительно, если положить a = l/2, то в области $x \ge l/2$ дифрагированная волна будет иметь вид

$$E_1(x, z, t) = C^*(ql/2) \operatorname{sinc} (\varkappa_0 l/2\pi) \exp \left[j \left(k_1 \cos \theta_1 \cdot x + k_1 \sin \theta_1 \cdot z - \omega_1 t \right) \right].$$

Таким образом, экстраполируя падающую и дифрагированную волну в центр АО ячейки, получаем решение (8), существенно более простое, чем (6), но тем не менее дающее верные значения амплитуды и фазы дифрагированной волны на выходе из области взаимодействия. Полученный результат ясен также из рис. 1: при любых θ_0 и θ_1 продолжение прямой 1' пересекает прямую 3 точно в центре области взаимодействия.

Отметим, что, как следует из выражения (8), в первом порядке лифракции наряду с геометрическим фазовым сдвигом $\Delta \varphi_1$ присутствует также зависящий от акустической мощности фазовый сдвиг $\Delta \varphi_1$. Но в отличие от нулевого порядка зависимость $\Delta \widetilde{\varphi}_1(P_a)$ имеет тривиальный характер: $\Delta \widetilde{\varphi}_1 = F(\varkappa_0 l/2\pi)$. Сдвиг $\Delta \widetilde{\varphi}_1$ может принимать лишь дискретные значения $m\pi$. При изменении акустической мощности фаза скачком меняется на π в точках $\varkappa_{0m} = 2m\pi/l$, когда интенсивность дифратированного света проходит через нуль. Причем такой характер зависимости $\Delta \widetilde{\varphi}_1(P_a)$ сохраняется при любых расстройках η_0 .

4. В оптически анизотропной среде при определенных условиях возможен режим брэгговской дифракции с двумя и даже тремя (кроме нулевого) дифракционными максимумами [3]. Векторные диаграммы для первого случая показаны на рис. 2. Если поляризация падающего излучения соответствует медленной моде анизотропной среды, то при $\theta_0 = \theta_B \approx -\lambda/\Lambda$ (λ — длина световой волны) свет последовательно рассеивается в максимумы 1-го и 2-го порядков (рис. 2, *a*). Каждый переход сопровождается изменением поляризации на ортогональную. Если же поляризация падающего света соответствует быстрой моде, то дифракция наблюдается при $\theta_B = 0$ (рис. 2, *b*). Дифракционная картина содержит два максимума +1-го и —1-го порядков с одинаковой поляризацией, ортогональной поляризации падающего излучения.

Результаты численного расчета амплитудных и фазовых характеристик АО взаимодействия для геометрии 0, 1, 2 (см. рис. 2, а) представлены на рис. 3-5. Штриховыми кривыми показана зависимость амплитуды световых волн от ql для различных значений $\eta_0 l$ и $\eta_1 l;$ сплошными кривыми изображены аналогичные зависимости для фазо-Уравнения (2) интегрировались в вого сдвига $\Delta \varphi_{\rho}$. интервале $-l/2 \ll x \ll l/2$, поэтому геометрический набег фаз, в общем случае равp-1 ный $\Delta \phi_{p} = (l/2) \sum \eta_{m}$, в этих расчетах не учитывался. Изменение qlm=0

61

(8)

Рис. 3. Амплитудные (a) и фазовые (б) характеристики нулевого порядка дифракцин: $1 - \eta_0 l = \eta_1 l = 0; 2 - \eta_0 l = \eta_1 l = 0,8\pi$ $3 - \eta_0 l = 0, \eta_1 l = \pi; 4 - \eta_0 l = \pi, \eta_1 l = 0$

q1

Рис. 5. Амплитудные (a) и фазовые (б) характеристики второго порядка дифракции: $I - \eta_0 l = \eta_1 l = 0; 2 - \eta_0 l = \eta_1 l = 0.8\pi; 3 - \eta_0 l = 0; \eta_1 l = \pi$

Сравнивая представленные здесь графики с результатами работы [1], можно отметить, что появление еще одного брэгговского максимума — второго порядка дифракции — приводит к существенным изменениям фазовых характеристик нулевого и первого порядков. Наиболее простой вид зависимости $\Delta \tilde{\varphi}_p(ql)$ имеют при полном фазовом синхронизме, когда $\eta_0 = \eta_1 = 0$ (кривые 1, б). Для первого порядка $\Delta \tilde{\varphi}_1 = F(ql/\sqrt{2\pi})$. Скачки фазы на π происходят в точках с нулевой интенсивностью дифрагированного света. В нулевом и втором порядках $\Delta \tilde{\varphi}_0 = \Delta \tilde{\varphi}_2 \equiv 0$. Или, что то же самое, можно считать, что в точках с нулевой интенсивностью фаза скачком меняется на 2π .

Появление отличных от нуля расстроек приводит к тому, что некоторые нули функций $|C_p(ql)|$ исчезают. При этом исчезают и соответствующие им скачки фазы. Зависимости $\Delta \tilde{\varphi}_p(ql)$ становятся плавными и в тем большей степени, чем больше значения расстроек. На рис. 3—5 представлены случаи, когда условие фазового синхронизма выполняется для одного из дифракционных переходов (кривые 3 и 4), а также случай равных расстроек (кривые 2). Видно, что, несмотря на различие в конкретных значениях, общий характер изменения $\Delta \tilde{\varphi}_0$ и $\Delta \phi_1$ для разных η_p один и тот же (рис. 3 и 4). В диапазоне $0 < ql < 3\pi$ перепад значений фазового сдвига по порядку величины составляет л. Иной вид имеют фазовые характеристики во втором порядке дифракции (рис. 5). В области $ql < \pi$ фазовый сдвиг $\Delta \phi_2$ практически не зависит от мощности акустической волны, а наиболее быстрые изменения $\Delta \phi_2$ наблюдаются вблизи $ql = 2\sqrt{2\pi}$. Расстройки η_0 и η_1 в одинаковой степени влияют на второй порядок. Для взаимно обратных значений $\eta_0 = \eta_a$, $\eta_1 = \eta_b$ и $\eta_0 = \eta_b$, $\eta_1 = \eta_a$ амплитуды $|C_2|$ совпадают, а фазы от-

личаются только знаком. Поэтому при равных расстройках $\Delta \tilde{\varphi}_2 \equiv 0$. В случае равных расстроек $\eta_0 = \eta_1 = \eta$ удается получить аналитическое решение системы уравнений (2). Для выходной плоскости x = l/2

$$C_0 = C^* \left(q^2 / 4\varkappa_1^2 \right) \left[1 + \left(1 + 4\eta^2 / q^2 \right) \cos \varkappa_1 l + j \left(4\eta\varkappa_1 / q^2 \right) \sin \varkappa_1 l \right] \exp\left(-j\eta l \right), \quad (9)$$

$$C_1 = C^* (ql/2) \operatorname{sinc} (\varkappa_1 l/2\pi) \left[\cos (\varkappa_1 l/2) + j (\eta/\varkappa_1) \sin (\varkappa_1 l/2) \right], \tag{10}$$

$$C_2 = C^* \left(q^2 l^2 / 8 \right) \operatorname{sinc}^2 \left(\varkappa_1 l / 2\pi \right), \tag{11}$$

где $\varkappa_1 = \sqrt{\eta^2 + q^2/2}$. Из (10) следует, что в первом порядке дифракции фазовые характеристики имеют вид (7) с заменой \varkappa_0 на \varkappa_1 . Данное обстоятельство отражает тот факт, что в рассматриваемом случае первый порядок играет по отношению ко второму такую же роль, что и нулевой по отношению к первому в обычном режиме брэгговской дифракции.

Для геометрии АО взаимодействия —1, 0, +1 (см. рис. 2, б) амплитудные и фазовые характеристики имеют много общего с рассмотренными выше. Рассеяние света в боковые максимумы в этом случае определяется расстройками η_0' (переход 0, +1) и η'_{-1} (переход 0, —1). Амплитудные и фазовые характеристики —1-го порядка совпадают с аналогичными характеристиками 1-го порядка в геометрии 0, 1, 2 при $\eta_0 = \eta'_{-1}$ и $\eta_1 = \eta_0'$, тогда как для +1-го порядка при $\eta_0 = \eta_0'$ и $\eta_1 = \eta'_{-1}$ справедливы соотношения $|C_{+1}| = |C_1|$, $\Delta \tilde{\varphi}_{+1} = -\Delta \tilde{\varphi}_1$. В случае равных расстроек $\eta_0' = \eta'_{-1} = \eta$

$$C_0 = C^* \varkappa_1^{-2} \left[\eta^2 + (q^2/2) \cos \varkappa_1 l \right], \tag{12}$$

 $C_{\pm 1} = C^* (ql/2) \operatorname{sinc} (\varkappa_1 l/2\pi) [\cos (\varkappa_1 l/2) \mp j (\eta/\varkappa_1) \sin (\varkappa_1 l/2)] \exp (\pm j\eta l/2).$ (13)

Из этих выражений следует, что в нулевом порядке возможны лишь скачки фазы на π в точках, где $C_0=0$. Амплитуды дифрагированных волн в +1-м и -1-м порядках совпадают, а фазы различаются знаком.

5. Проведенные расчеты показывают, что фазовые характеристики АО взаимодействия отличаются большим разнообразием. Они существенно зависят от акустической мощности и геометрии взаимодействия. Тем не менее можно отметить общие закономерности, справедливые, по-видимому, не только для брэгговского режима дифракции. Фаза световых волн во всех дифракционных максимумах на выходе из области взаимодействия в общем случае определяется тремя факторами: обычным набегом фаз $\varphi_p = k_p \cos \theta_p \cdot l$, дополнительным геометрическим фазовым сдвигом $\Delta \phi_p$ и дополнительным сдвигом $\Delta \phi_p$, зависящим от мощности акустической волны. Особый интерес представляет фазовый сдвиг $\Delta \phi_{p}$, который может достигать величин $(\sim \pi)$. значительных В АО устройствах, предназначенных для обработки сложных оптических и радиосигналов, невозможно обеспечить выполнение условия фа-

63.

зового синхронизма сразу для всех спектральных составляющих падающего света. Поэтому составляющие испытывают разный фазовый сдвиг $\Delta \tilde{\varphi}_{p}$, что приводит к пространственной фазовой модуляции дифрагированного излучения. Этот эффект необходимо учитывать при расчете АО устройств.

СПИСОК ЛИТЕРАТУРЫ

[1] Балакший В. И., Никанорова Е. А., Парыгин В. Н. Вестн. Моск. ун-та. Физ. Астрон., 1983, 24, № 6, с. 70. [2] Парыгин В. Н. Радиотехн. и электроника, 1974, 19, № 1, с. 38. [3] Волошинов В. Б., Парыгин В. Н., Чирков Л. Е. Вестн. Моск. ун-та. Физ. Астрон., 1976, 17, № 3, с. 305.

Поступила в редакцию 05.12.84

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1985, Т. 26, № 6

УДК 539.67

ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И КРИСТАЛЛОГРАФИЧЕСКОЙ ОРИЕНТАЦИИ НА ВНУТРЕННЕЕ ТРЕНИЕ В МОНОКРИСТАЛЛАХ Cs1

Н. А. Тяпунина, Е. К. Наими, Г. З. Курбанов

(кафедра молекулярной физики)

1. Введение. Известно, что внутреннее трение (ВТ) весьма чувствительно к структурным изменениям кристаллической решетки и зависит от типа, плотности и характера взаимодействия различных дефектов в кристаллах. На основании измерений ВТ можно получить дополнительную информацию о дефектах кристаллической решетки, которую нельзя извлечь другими способами. В частности, по ориентационной зависимости ВТ можно судить об активности различных систем скольжения дислокаций в кристаллах, не подвергая их пластической деформации. Эта возможность метода ВТ была продемонстрирована на кристаллах типа NaCl и ГПУ металлах [1-4]. В связи с этим представляет интерес также исследовать ориентационную зависимость ВТ в кристаллах типа CsI. Монокристаллы CsI являются удобным для этой цели объектом исследования, поскольку в них благодаря ионным связям дислокации не диссоциируют на частичные с образованием дефекта упаковки.

2 Техника эксперимента. Для измерения ВТ и осуществления пластической деформации образцов в режиме высокочастотной вибрации использовался метод составного пьезоэлектрического осциллятора [5]. За меру ВТ принималась величина, обратная добротности осциллятора, Q⁻¹. Для перехода от измерений ВТ к пластической деформации образцов достаточно было увеличить амплитуду переменного напряжения, подаваемого на обкладки пьезокварца. Контроль за изменением состояния образца осуществлялся по вольт-амперным характеристикам (ВАХ) составного осциллятора [6]. Амплитуда сдеформации є₀ варьировалась в пределах от 10⁻⁶ до 10⁻³. Все измерения проводились при комнатной температуре и остаточном давлении воздуха 10⁻³ Па.

Образцы монокристаллов CsI различной ориентации выпиливались нитяной пилой из одной пластинки, две поверхности которой были параллельны плоскости (001). Ориентация образцов характеризовалась