УДК 537.591

ИЗУЧЕНИЕ УСЛОВИЙ ГЕНЕРАЦИИ ЭНЕРГИЧНЫХ ЧАСТИЦ В СОЛНЕЧНЫХ ВСПЫШКАХ

Ю. И. Логачев, В. Г. Столповский

На высокоапогейных ИСЗ «Прогноз» и АМС «Венера» было зарегистрировано 300 событий (вспышек) в солнечных космических лучах (СКЛ). Полагая, что увеличение потока энергичных частиц в межпланетной среде является следствием процесса ускорения их во время солнечной вспышки, экспериментальные результаты можно использовать для получения информации об источнике частиц, условиях их выхода и о взаимосвязи между событиями в СКЛ и всплесками интенсивности излучения в рентгеновском, оптическом и радиодиапазонах.

В работе рассмотрены результаты измерений потоков электронов в интервале энергий $E_e \sim 0.025 - 1.6$ МэВ, протонов ($E_p \sim 1 - 60$ МэВ) и рентгеновских квантов ($E_x \sim 0.05 - 0.75$ МэВ) по методике [1, 2].

Наиболее существенными представляются два результата. Первый — относительно большое число событий в СКЛ, привязанных к всплескам в тепловом рентгеновском диапазоне. Мы вычислили коэффициенты корреляции r между максимальными потоками частиц и амплитудой всплеска в тепловом рентгеновском диапазоне. Для электронов с $E_e \ge 0,025$ и $E_e \ge 0,07$ МэВ и протонов с $E_p \ge 1,0$ МэВ получено значение $r \approx 0.8 \pm 0,03$. Эти частицы несут основную долю энергии СКЛ. С другой стороны, поток теплового рентгеновского излучения считается мерой энергии, реализуемой по вспышке [3, 4]. Поэтому большие r означают, что энергия, расходуемая на ускорение основной спектральной части СКЛ, приблизительно пропорциональна полной энергии вспышки. В случае протонов с $E_p \ge 25$ МэВ $r \sim 0,65 \pm 0,08$, что указывает на более сложную зависимость потока таких протонов от полной энергии вспышки.

Второй результат заключается в том, что связь вспышек в СКЛ с всплесками жесткого рентгеновского (X_h) излучения заметно слабее, чем связь с событиями в тепловом рентгеновском диапазоне. Только ~50% вспышек в СКЛ привязываются к жестким рентгеновским всплескам (при этом в число привязанных входят все «протонные» вспышки). При сравнении амплитуд X_h -всплесков и потоков вспышечных частиц было получено, что коэффициенты корреляции $r \ll 0,7$.

Мы провели анализ распределения числа событий в зависимости от максимальных потоков электронов, жесткого и теплового рентгеновского излучения. Результаты анализа показаны на рис. 1. На рис. 1, а приведены дифференциальные функции распределения числа вспышек в СКЛ, сопровождавшихся всплесками жесткого и теплового рентгеновского излучения (далее такие события будем обозначать eX_hX_t), по максимальному потоку электронов J_e с $E_e > 0,07$ МэВ. Здесь же приведено распределение событий в СКЛ по J_e в случае, когда всплески жесткого рентгеновского излучения не были зарегистрированы (такие события обозначим как eX_hX_t). На рис. 1, б представлены аналогичные результаты, но в зависимости от величины максимального потока теплового рентгеновского излучения J_{xt} . На рис. 1, в дано распределение числа событий eX_hX_t по амплитуде всплеска жесткого ренттеновского излучения J_{xh} . Из рис. 1 следует, что в большей части интервала значений J_{e} , J_{Xt} и J_{Xh} распределения числа событий можно аппроксимировать степенными функциями. При этом спектральный индекс α различен для событий типа eX_hX_t и $e\overline{X}_hX_t$. В первом случае $\alpha \sim 1,3-1,4$ независимо от параметра, по которому построено распределение, во втором — $\alpha \sim 1,7-1,8$. Таким образом, при использовании дополнительного признака — всплеска X_h излучения — мы получили два множества событий в СКЛ с различными амплитудными распределениями.

Далее, из рис. 1 видно, что вероятность реализации событий типа eX_hX_t увеличивается с ростом мощности вспышки и, начиная с некоторых значений $J_e(J_{xt})$, наблюдаются только такие события. Это согла-

Рис. 1. Дифференциальные функции распределения числа событий в СКЛ в зависимости от амплитуды потока электронов с $E_e \ge 0.07$ МэВ (a), амплитуды J_{xt} всплеска теплового рентгеновского излучения (б) и амплитуды всплеска жесткого рентгеновского излучения J_{xh} (в). N — число событий, dN — число событий в интервале амплитуд [J, J+dJ]

суется с концепцией «синдрома мощной солнечной вспышки» [4], по которой с увеличением мощности увеличивается вероятность сопровождения вспышки различными явлениями. Однако в некотором интервале амплитуд J_e и J_{Xt} реализуются события в СКЛ обоих типов и только мощностью вспышки не представляется возможным это объяснить.

Для выявления дополнительных признаков вспышек типа eX_hX_t и eX_hX_t мы проанализировали энергетические спектры вспышечных электронов. На рис. 2 приведены показатели степени для дифференциальных спектров электронов γ_e в интервале энергий 0,025—0,2 МэВ в зависимости от амплитуды потока J_e . Величины γ_e получены при усреднении по числу событий данного типа с амплитудой J_e в интервале $[J_e, J_e + dJ_e]$. Интервалы амплитуд выбирались такими же, как и на рис. 1, a.

2 ВМУ, № 1, физика, астрономия

Из рис. 2 видно, что события в СКЛ, сопровождающиеся жестким рентгеновским излучением, отличаются от событий типа $e\bar{X}_hX_t$ наклоном спектра электронов ($\Delta\gamma_e \sim 0.7 - 1.0$).

Такое различие характеристик естественно связать с различием условий в области ускорения частиц. События первого типа возникают в замкнутых магнитных структурах, что обеспечивает захват электронов в ловушку на время не менее 1 мин. Это время оказывается достаточным для генерации жесткого рентгеновского излучения и изменения спектра ускоренных электронов. В событиях второго типа энер-

гичные электроны сразу покидают область ускорения, не создавая регистрируемых потоков жесткого рентгеновского излучения. Оценки показывают, что в событиях второго типа ускорение электронов осуществляется при концентрации плазмы не более 5 · 10⁹ см⁻³.

Рис. 2. Показатели степени для дифференциального энергетического спектра в зависимости от величины потока электронов с $E_e \sim 0.025$ — 0.2 МэВ для двух типов событий

Временной ход интенсивности и спектр вспышечных СКЛ в точке наблюдения зависят не только от свойств источника на Солнце, но и от параметров межпланетной среды, в частности от частотного спектра флуктуаций межпланетного магнитного поля (ММП). Поэтому учет эффектов распространения необходим при экстраполяции наблюдаемых потоков СКЛ к источнику. С другой стороны, интересно исследовать связь параметров потоков СКЛ со спектром флуктуаций ММП. В рамках квазилинейной теории получена связь между коэффициентом диффузии частиц k (или длиной свободного пробега $\lambda = 3k/v$, где v — скорость частицы) и спектральным индексом флуктуаций q[5, 6].

Очевидно, что эффекты распространения для электронной и протонно-ядерной компоненты СКЛ различны. Основные потери энергии электронов в межпланетной среде связаны с возбуждением ленгмюровских колебаний и могут составлять значительную долю начальной энергии частиц только при $E_e < 10$ кэВ [7]. Временной профиль интенсивности электронов с $E_e \sim 0.025 - 1.5$ МэВ, наблюдаемый на гелиоцентрических расстояниях 0.7—1.0 а.е., достаточно хорошо описывается на основе квазилинейной теории при мгновенном источнике. Поэтому полное число и спектр электронов, инжектированных в межпланетную среду, получаются как решения диффузионного уравнения. [8, 9].

Для протонов и ядер потери энергии в межпланетной среде обусловлены адиабатическим охлаждением, величина которого зависит от соотношения v и U, U — скорость солнечного ветра. Величина эффекта адиабатического охлаждения протонов изучалась экспериментально [10, 11] по наиболее важным и в то же время сравнительно просто извлекаемым характеристикам событий СКЛ: максимальной интенсивности частиц J_{max} в данном интервале энергий и спектру, построенному по максимальным интенсивностям $dJ_{\text{max}}(E)/dE$.

Время достижения максимума интенсивности данной компоненты СКЛ t_{max} выражается через коэффициент диффузии в виде $t_{max} = r^2/6k$, где r — расстояние от Солнца до точки наблюдения; t_{max} определяется как интервал времени между моментом регистрации максимума H_{α} -излучения, рентгеновского или микроволнового всплеска и моментом наблюдения максимума частиц в заданном интервале энергий. Из квазилинейной теории можно получить выражение для коэффициента диффузии $k \propto E^{(3-q)/2} (A/Z)^{2-q}$ или для длины свободного пробега $\lambda = 3k/v \propto E^{(2-q)/2} (A/Z)^{2-q}$, где A и Z — атомный номер и заряд частицы соответственно. Отсюда видно, что t_{max} различных компонент СКЛ зависит от показателя q. Далее, спектры dJ_{max}/dE в данной точке пространства также будут испытывать зависимость от q вследствие зависимости коэффициента диффузии k.

Для протонов — компоненты СКЛ, наиболее широко представленной в экспериментальных данных, A/Z=1 и у коэффициента диффузии остается только зависящая от энергии составляющая $k \propto E^{(2-q)/2}$. Зависимость $t_{\max}(E)$ и энергетический спектр dJ_{\max}/dE для протонов обсуждались в [11]. Было показано, что особенности спектра dJ_{\max}/dE и зависимости $t_{\max}(E)$ в точке наблюдения на 1 а.е. можно объяснить, если предположить, что k не зависит от r и имеет вид $k=k_0E^a$ $(a\approx0,4-0,6)$, и учесть адиабатические потери, испытываемые протонами при движении в межпланетной среде. Потери энергии частицы вследствие конвекции и адиабатического охлаждения определяются в работе [11] выражением

$$\Delta E = E_0 - (E_0^a - 4aU/(9k_0))^{1/a}.$$

Таким образом, при изучении протонной компоненты СКЛ двумя способами был оценен показатель *а* в выражении для коэффициента диффузии $k = k_0 E^a$. Отсюда следует, что при $a \sim 0.5 q \sim 2$. Значение $q \sim 2$ отличается от принятой в [5] величины $q \sim 1.5$. Это имеет ряд специфических следствий. При q=2 для k (и λ) исчезает зависимость от A/Z. Если в каком-то событии для протонов выполняется зависимость, по виду близкая к $t_{\max} \sim E^{-0.5}$, то времена t_{\max} для частиц с разными Z, но с одной и той же энергией на нуклон E должны совпадать.

Для проверки такого заключения в [12] было проанализировано 6 вспышек СКЛ, для которых с помощью спутников «Прогноз-5,6» и ИМП-7,8 была получена достаточно подробная информация о временном ходе и спектрах протонов и альфа-частиц. Данные о t_{max} для протонов и альфа-частиц с заданной энергией на нуклон для каждого из шести событий показаны на рис. 3. Видно, что наблюдаемые t_{max} в высокоэнергетичной части спектра располагаются вблизи штриховой линии, т. е. зависимость $t_{\max}(E)$, полученная в эксперименте, может быть представлена как $t_{\max} \infty E^{-0.5}$. В области малых энергий t_{\max} отклоняются от этой зависимости, что естественно связать с адиабатическими потерями частиц при их распространении в межпланетной среде. Видно также, что в пределах ошибок совпадают времена t_{\max} для протонов и альфа-частиц с одной и той же энергией на нуклон. В случае если показатель спектра флуктуаций ММП q~1,5, при заданной величине E в МэВ/нуклон $k_{\alpha} = k_{\rho} \sqrt{2}$. Тогда $t_{\max \rho}/t_{\max \alpha} \sim 1.4$ и мы должны были бы обнаружить различные энергетические зависимости t_{\max} для протонов и альфа-частиц, причем эта разница выходила бы за пределы ошибок.

Далее, легко показать, что при $q \sim 1,5$ ($a \sim 0,75$) потери ΔE для протонов должны быть меньше, чем для альфа-частиц, и,

19

2*

Рис. 3. Зависимость времен максимума t_{max} потока частиц от энергии частиц E (протоны: темные точки — данные ИСЗ «Прогноз», косые кресты — данные ИСЗ ИМП-7,8; альфа-частицы: светлые точки — данные ИСЗ «Прогноз», светлые квадраты — данные ИМП-7,8) во вспышках: 20.12.76 (W48) (1), 12.10.77 (W02,1B) (2), 6.10.77 (W59,1B) (3), 27.12.77 (W79,1B) (4), 24.9.77 (W110) (5), 22.11.77 (W40,2B) (6). Штриховые линии — зависимости $t_{max} \sim E^{0.5}$

. *

следовательно, нерегулярность в спектре $dJ_{\rm max}/dE$ для альфачастиц должна проявиться при меньших энергиях. На рис. 4 показаны спектры протонов и альфа-частиц для трех типичных вспышек [12]. Излом в спектре альфа-частиц наступает не раньше, чем для протонов. Это обстоятельство не позволяет считать, что индекс q существенно меньше 2.

Из выражения для длины свободного пробега частицы λ при q=2 получаем λ =const. Таким образом, вся совокупность экспериментальных данных для вспышечных протонов и ядер показывает, что распространение частиц в межпланетной среде описывается диффу-

Рис. 4. Интегральные энергетические спектры протонов и альфа-частиц для вспышек 6.10.77 (3), 12.11.77 (2), 27.12.77 (4). Протоны: темные точки — данные ИСЗ «Прогноз-6», косые кресты — ИМП-7,8; альфа-частицы: светлые точки — данные ИСЗ «Прогноз-6», прямые кресты — ИМП-7,8

Рис. 5. Дифференциальные энергетические спектры по максимумам интенсивности в различных компонентах СКЛ для вспышки 24.9.77: *е* — спектр электронов; *р* — протонов, *α* — альфа-частиц; О — О, △ — Mg, + — С, × — S, ● — Fe

зионным уравнением и длина свободного пробега частиц λ практически не зависит от энергии в диапазоне 1—100 МэВ/нуклон.

В заключение коснемся вопроса о спектрах вспышечных частиц. В работах [9—17] было показано, что спектры различных компонент СКЛ удовлетворительно аппроксимируются степенными функциями с близкими по величине показателями. Показатель дифференциального спектра $\gamma_d \sim 2$ —3. Эта величина была получена для электронов с $E_e \sim 0,1$ —3,0 МэВ, протонов, альфа-частиц и более тяжелых ядер с энергиями не меньше 1—10 МэВ/нуклон, причем в случае протонов и ядер нижняя граница интервала энергий с таким спектром зависит от мощности вспышки и условий в межпланетной среде. Для иллюстрации рассмотрим спектры вспышечных частиц различных зарядов и масс во вспышке 24.9.77 [12], построенные по данным измерений на ИСЗ «Прогноз-6» (электроны, протоны, ядра гелия, углерода и кислорода) [13] и ИСЗ ИМП-7 (протоны и более тяжелые ядра [16, 18])

(рис. 5). Спектры ядер тяжелее гелия для большей наглядности разделены на две группы: Mg, C, O и O, S, Fe.

Из рис. 5 видно, что спектры электронов, протонов, альфа-частиц и более тяжелых ядер имеют близкие наклоны. Показатели спектров различных компонент $\gamma_d \sim 2,2-2,7$. Этот факт, по-видимому, может свидетельствовать о том, что все частицы ускоряются в одно и то же время и в одном и том же интервале высот в солнечной атмосфере.

Авторы выражают глубокую благодарность Е. И. Дайбог за полезные дискуссии и проведение количественных оценок.

СПИСОК ЛИТЕРАТУРЫ

[1] Беляков С. А. и др. Космич. исслед., 1984, 22, с. 793. [2] Barat C. et al. Space Sci. Instrum., 1981, 5, р. 228. [3] Hudson H. S. Solar Phys., 1978, 57, р. 237. [4] Kahler S. W. J. Geophys. Res., 1982, 82, р. 3439. [5] Jokipii J. R. Rev. Geophys. Space Phys., 1971, 9, р. 27. [6] Тверской Б. А. ЖЭТФ, 1967, 53, с. 1417. [7] Каплан С. А., Цытович В. П. Плазменная астрофизика. М.: Наука, 1972. [8] Курт В. Г. и др. Письма в Астрон. журн., 1977, 3, № 3, с. 170. [9] Lin R. P. et al. Astrophys. J., 1982, 253, N 1, р. L 949. [10] Кигt V. G. et al. In: Proc. 17th Intern. Cosmic Ray Conf., 1981, v. 3, р. 69. [11] Дайбог Е. И. и др. Космич. исслед., 1981, 19, с. 704. [12] Дайбог Е. И. и др. Там же, 1984, 22, с. 763. [13] Григорян О. Р. и др. Изв. АН СССР, сер. физ., 1982, 46, с. 1698. [14] Daibog E. I. et al. In: Proc. 13th Intern. Cosmic Ray Conf., 1983, v. 4, p. 127. [15] Мс Guire R. E. In: Proc. 17th Intern. Cosmic Ray Conf., 1981, v. 3, p. 69. [16] Dietrich W. F., Simpson J. A. Astrophys. J., 1978, 225, p. L41, 906. [17] Van-Hollebecke M. A. et al. Solar Phys., 1975, 41, p. 189. [18] Briggs P. R. et al. In: Rep. UAG-83, p. 1, 188, WDC-A. February 1982, Boulder, Colorado.

Поступила в редакцию 27.06.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 1

УДК 532.165

ИЗУЧЕНИЕ МАГНИТОСФЕРЫ ЗЕМЛИ ПО РЕЗУЛЬТАТАМ Исследования потоков заряженных частиц

П. В. Вакулов, С. Н. Кузнецов

Реальная структура геомагнитного поля на больших расстояниях от Земли (более 4—5 R_3) существенно отличается от структуры поля внутренних источников вследствие взаимодействия его с солнечным ветром и межпланетным магнитным полем. На рис. 1 представлен схематический разрез магнитосферы по полуденно-полуночному меридиану, когда компонента межпланетного магнитного поля, перпендикулярная плоскости геомагнитного экватора, $B_z \leqslant 0$.

Магнитосферу можно разбить на несколько структурных образований. 1. Внутренняя часть, где магнитное поле определяется в основном полем внутренних источников, силовые линии замкнуты. В этой области существуют стационарные потоки электронов, протонов и ионов с энергией в сотни кэВ и выше — радиационные пояса Земли. 2. Область вытянутых замкнутых силовых линий с ночной стороны Земли. На этих силовых линиях находится плазменный слой — потоки электронов, протонов и ионов со средней энергией 1—10 кэВ. 3. Области ослабленного магнитного поля на больших расстояниях — дневные каспы. В эти области относительно легко попадают частицы солнечного ветра. 4. Области полярной шапки при компоненте межпланетного поля $B_z \leq 0$, соединенные по силовым линиям с межпланетным пространством. Принято считать, что при $B_z > 0$ большая часть магнитных