моментов осциллируют примерно с одинаковой частотой. Характер осцилляций $\tilde{\mathbf{t}}_{k\varkappa}^{(2^+)}(\vartheta_y)$, вообще говоря, близок к характеру углового распределения $d\sigma/d\Omega$.

В реакции ¹³С (³He, α') ¹²С* для тензора ориентации $\hat{t}_{4\varkappa}^{(2^+)}(\vartheta_y)$ гексадекупольного момента под малыми углами наибольшей оказывается компонента с $\varkappa = 0$, т. е. прецессия гексадекупольного момента незначительна. При увеличении ϑ_y преобладание компоненты с $\varkappa = 0$ становится не столь заметным, и прецессия гексадекупольного момента увеличивается, хотя она выражена слабее, чем прецессия квадрупольного момента. В реакции ¹²С (α, α') ¹²С* под малыми углами ϑ_y компоненты тензоров $\tilde{t}_{2\varkappa}^{(2^+)}(\vartheta_y)$ и $\tilde{t}_{4\varkappa}^{(2^+)}(\vartheta_y)$ с $\varkappa = 0$ также превышают остальные. Однако в области больших углов, особенно для тензора $\tilde{t}_{4\varkappa}^{(2^+)}(\vartheta_y)$, существенную роль начинают играть компоненты с $\varkappa \neq 0$. В этой угловой области ориентации квадрупольного и гексадекупольного моментов сравнимы между собой, причем направления прецессии этих моментов, вообще говоря, различны.

Таким образом, сравнение угловых зависимостей $\tilde{t}_{2\varkappa}^{(2^+)}(\vartheta_y)$ и $\tilde{t}_{4\varkappa}^{(2)^+}(\vartheta_y)$ для неупругого рассеяния α -частиц и реакции (³He, α') показывает, что при неупругом рассеянии происходит гораздо более сильная перестройка ядра. Отсюда следует, что форма ядра ¹²С в состоянии 2⁺, образованного при неупругом рассеянии α -частиц, достаточно сложна и не сводится к простому эллипсоиду.

Авторы выражают благодарность Ю. Ф. Смирнову за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Zelenskaya N. S., Teplov I. B. Nucl. Phys. A, 1983, 406, р. 306. [2] Теплов И. Б. и др. Письма в ЖЭТФ, 1984, 39, с. 31; Гуревич Г. С. и др. Изв. АН СССР, сер. физ., 1984, 48, с. 119. [3] Васильева О. И. и др. Изв. АН СССР, сер. физ., 1984, 48, с. 1959. [4] Эдмондс А. В кн.: Деформация атомных ядер. М.: ИЛ, 1958, с. 335.

Поступила в редакцию 24.06.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 1

УДК 539.172.3

новые данные о гигантском дипольном резонансе ядра 40Са

А. С. Габелко, М. Х. Жалилов, Б. С. Ишханов, И. М. Капитонов, И. М. Пискарев

В настоящей работе приведены новые экспериментальные данные •о парциальных каналах распада дипольного гигантского резонанса (ДГР) дважды магического ядра ⁴⁰Са, ранее широко исследовавшего-•ся как теоретически, так и экспериментально.

Эксперимент был выполнен на пучке тормозного ү-излучения бетатрона НИИЯФ МГУ. Верхняя граница спектра тормозного ү-излучения составляла 32 МэВ. Таким образом, практически целиком охватывалась область энергий возбуждения ядра-мишени (⁴⁰Ca), отвечающая ДГР (рис. 1). Выделение парциальных каналов ДГР осуществлялось посредством регистрации вторичных ү-квантов, снимающих возбуждение конечных ядер. Вторичные ү-кванты регистрировались Ge(Li)-де-

43

тектором с рабочим объемом 100 см³ под углом 140° к направлениюпервичного (тормозного) у-пучка. Мишенью служил образец металлического кальция весом 415 г. Описание методики эксперимента и обработки у-спектров дано в работе [1].

В результате анализа итогового γ -спектра получена информация об интегральных сечениях фотоядерных реакций: (γ , p_i), (γ , n_i), (γ , $2p_i$), (γ , τ_i) и (γ , α_i) (здесь индекс *i* нумерует состояния конечного ядра). Абсолютные величины сече-

ний были получены из сравнения выходов γ -линий в спектре для ⁴⁰Ca и эталонной γ -линии с энергией 6,32 МэВ в спектре для ¹⁶О, измеренных в идентичных экспериментальных условиях. Данные о реакциях (γ , p_i) и (γ , n_i) ранее были получены в работах [2, 3]. Характеристики состояний конечных ядер, заселяемых при фоторасщеплении ⁴⁰Ca, и интегральные сечения их за-

Рис. 1. Фотонуклонные сечения для ядра ⁴⁰Са: 1 — экспериментальное сечение реакции (γ , p) [3]; 2 — полупрямая компонента сечения реакции (γ , p) (данные настоящей работы); 3 — сечение реакции (γ , n), рассчитанное в настоящей работе из экспериментальных парциальных сечений (γ , p_i) [3]; 4 — экспериментальное сечение реакции (γ , n) [9]

Рис. 2. Парциальные фотонуклонные сечения для ядра 40 Ca: сплошные кривые — экопериментальные сечения реакций (γ , p_i) [3]; пунктирные — полупрямые компоненты сечений реакций (γ , p_i) (данные настоящей работы); гочечные — сечения реакций (γ , n_i), рассчитанные в настоящей работе из экспериментальных сечений (γ , p_i)

селения представлены в табл. 1 и 2. В табл. 1 приведены также данные наиболее полного раннего эксперимента [3]: по регистрации вторичных у-квантов и по регистрации протонов.

Как видно из табл. 1, результаты настоящего эксперимента хорошо согласуются с данными работы [3] для парциальных сечений заселения уровней конечных ядер ³⁹К и ³⁹Са с $E_i < 6,40$ МэВ. Уровни, расположенные выше этой энергии, интенсивно распадаются с испусканием не γ -квантов, а нуклонов (энергия отделения протона в ядре ³⁹К — 6,374 МэВ, энергия отделения нейтрона в ядре ³⁹Са — 5,8 МэВ), и поэтому лишь небольшая часть этих распадов могла быть выделена

Таблица 1

Интегральные	сечения	реакции 40С	a (γ, <i>p_i</i>) ³⁹	К и 40Са (у	(n_i)	³⁹ Са и	характеристики
		заселяемых	состояний	конечных	ядер		• •

١

Уровни конечных ядер ³⁹ К и ³⁹ Са					Интегральные сечения реакций (у, р _i) и (у, n _i) МэВ.мб			
номер ∞состоя- ния і	ядро	энер- гия Е _і , МэВ	спин и четность јл	конфигу- рация дырки [<i>nlj</i>) ⁻¹	спектроско- пический фактор С ² S	настоящая работа (до 30 МэВ)	работа [3] (до 30,25 МэВ), регистра- ция у)	работа [3] (до 24,6 МэВ, регистра- ция р)
1	2	F3	4	5	6	7	8	9
0	K Ca	0	3/2+	1 <i>d</i> _{3/2}	3,97±0,27 5,4±2	${\sim}115[3]\{\sim}45[4]$		100±7
1	K Ca	$\begin{array}{c} 2,52\\ 2,47 \end{array}$	1/2+	$2s_{1/2}$	1,65±0,2 2,1±1	$61,0\pm 2,1$ $18,2\pm 3,1$	59±4 18±2	49±5
2	K Ca	2,81 2,80	7/2-	1f _{7/2}	0,52±0,06 0,44±0,13	18,5±3,4	17 ± 2 3 ± 2)
. 3	K Ca	3,02 3,03	3/2-	2p _{3/2}	0,05±0,025 0,03±0,024	16,5±1,8	15 ± 2	
-4	K	3,60	9/2-			3,6 <u>±</u> 1,7	2,3±1	
5 6	K* Ca**	3,88 3,87	3/2- (3/2+)	2p _{3/2}	0,02	$3,4{\pm}1,4$	2,9±0,7	} 50 ± 5²
6 8	K** Ca*	3,94 3,94	3/2+ (3/2-)	$(2p_{3/2})$	 0,04 <u>±</u> 0,03	11±1,3	10,2±0,7	
10	Ca	4,02	1/2+		$0,09{\pm}0,02$	4,2±2,4		
8	ĸ	4,08	3/2-	$(2p_{3/2})$	_	$3,8{\pm}2,5$	3,5±0,7)
13	Ca	4,49	(5/2+)	$(1d_{5/2})$	0,1	1,7±0,9		
15	K	4,74	(3/2- 7/2+)	— [·]		3,8±1,8		
16	K	4,93	3/2+	—	·	6,3±1,8	$5,4{\pm}0,8$	
.22 18	K Ca	5,26 5,13	5/2+	1d _{5/2}	1,0±0,1 1,3±0,3	$^{6,4\pm1,5}_{0,9\pm0,9}$	6,5±1 2,0±0,7	
.21	K	5,17	(1/2-7/2+)	_		$1,3{\pm}0,8$		
-23	K	5,32	3/2+			$4,0{\pm}1,1$	3,8 ±1,6	
.26 19	K Ca	$5,60 \\ 5,49$	5/2+	1d _{5/2}	$_{0,66\pm0,02}^{0,66\pm0,02}_{0,52\pm0,1}$	$^{8,2\pm1,8}_{2,4\pm0,8}$	8±1 2,2±0,8	67 ± 8^2
-28	K	5,71	3/2+			1,8±0,9		
32	K	5,83	(1/2, 3/2)-	$(2p_{3/2})$	0,05	$2,6{\pm}1,5$	2 ± 1	İ
-34 21	K Ca	5,94 6,00	(1/2, 3/2) ⁻ (3/2 ⁻)	$(2p_{3/2})$	0,03 (0,02)	1,0±0,6	1±1	
42 22	K Ca	6,35 6,15	5/2+ (3/2, 5/2)+	1 <i>d</i> _{5/2}	1,25 $1,3\pm0,25$	6,7±1,4 1,1±0,6	7±1 1,5±0,8	
49	Ca K K	6,40 6,55 6,77	$(5/2^+)$ 7/2 ⁻ ; T=3/2 $(5/2^+)$	$(1d_{5/2})$ $(1d_{5/2})$	(0,25) (0,1)	$1,4\pm0,5$ 2 ± 1 4 ± 1.5		,
	Ca	6,92	(5/2+)	$(1d_{5/2})$	(0,09)	$3,7\pm1,3$	1	
	Ca	7,70	(5/2+)	$(1d_{5/2})$	(0,1)	1,5±0,6		

Пересчет сечений (у, p₀) и (у, n₀) для области энергий до 30 МэВ из работ [3] и [4] соответственно.
Приведенное сечение относится только к (у, p)-каналу.

посредством регистрации у-квантов. Распады высоковозбужденных состояний ядер ³⁹К и ³⁹Са дают существенный вклад в сечения реакций (у, 2p) и (у, np). Некоторые из (у, 2p_i)-каналов наблюдались в настоящем эксперименте (табл. 2). По данным работы [3], полученным

Таблица 2

Реакция	Конечное ядро	Номер состояния	Энергия Е _і , МэВ	Спин и чет- ность	Интегральное сечение в МэВ·мб.
γ, 2 <i>p</i> _i	³⁸ Ar	1 2 3	2,17 3,38 3,81	2+ 0+ 3-	$8,5\pm4,5$ $8,4\pm1,8$ $3,8\pm1,4$
γ, τ1	³⁷ Ar	1	1,41	1/2+	4,1±1,7
γ, α _i	³⁶ Ar	$\frac{1}{2}$	1,96 4,18	2+ 3-	$13,8\pm2,6$ $3,4\pm1,3$

Интегральные сечения реакции ⁴⁰Са (γ , 2 p_i) ³⁸Аг, ⁴⁰Са (γ , τ_1) ³⁷Аг и ⁴⁰Са (γ , α_i) ³⁸Аг и характеристики заселяемых состояний

из спектров фотопротонов (колонка 9 табл. 1), интегральное сечение заселения уровней с $E_i > 6,4$ МэВ ядра ³⁹К близко к 100 МэВ·мб (в области энергии возбуждения ядра-мишени ⁴⁰Са ниже 24,6 МэВ).

Исследуем вопрос о чистоте состояний ДГР ядра ⁴⁰Са по изоспину. Ядро ⁴⁰Са имеет одинаковое число протонов и нейтронов, поэтому при поглощении E1-фотонов у него возбуждаются только состояния с изоспином T=1. При распаде таких состояний с испусканием нуклонов образуются зеркальные ядра, имеющие совпадающие последовательности уровней. Если пренебречь кулоновскими силами, нарушающими чистоту изоспина, распад T=1 состояний ядра ⁴⁰Са с испусканием протонов и нейтронов должен быть полностью симметричным, т. е. отношение сечений реакций (γ , p_i) и (γ , n_i) должно быть равно единице. Нарушение чистоты изоспина кулоновскими силами приводит к тому, что волновая функция дипольного состояния приобретает вид

$$\psi = \alpha_0 \psi \left(T = 0 \right) + \alpha_1 \psi \left(T = 1 \right),$$

где $\alpha_0^2 + \alpha_1^2 = 1$. Кроме того, появляется различие в порогах реакций (γ , p) и (γ , n) и сказывается влияние дополнительного кулоновского барьера при испускании протонов.

Амплитуда примеси состояний с T=0 к состояниям с T=1, равная α_0/α_1 , может быть найдена с учетом всех перечисленных выше факторов из отношений фотопротонных и фотонейтронных сечений заселения совпадающих уровней конечных зеркальных ядер [5, 6]:

$$\frac{\sigma(\gamma, p_i)}{\sigma(\gamma, n_i)} = \sqrt{\frac{\varepsilon_p}{\varepsilon_n}} \frac{P_p}{P_n} \left| \frac{\alpha_1 + \alpha_0}{\alpha_1 - \alpha_0} \right|^2, \tag{1}$$

где P_p , P_n — проницаемости барьеров для протонов и нейтронов, а ε_p , ε_n — их кинетические энергии.

Для ядра ⁴⁰Са наиболее надежно определены парциальные фотонуклонные сечения заселения основных и первых возбужденных состояний конечных ядер. Сечения реакций (γ , p_0) и (γ , n_0) взяты из работ [4, 7, 8], реакций (γ , p_1) и (γ , n_1) — из работы [3]. Расчет проводился для орбитального момента доминирующей нуклонной волны, который определялся из экспериментальных угловых распределений. Величина $|\alpha_0/\alpha_1|$ находилась в районе максимума ДГР (19—19,5 МэВ), гдеотношение парциальных сечений известно с наилучшей точностью:

46

 $\sigma(\gamma, p_0)/\sigma(\gamma, n_0) = 2,2 \pm 0,2; \sigma(\gamma, p_1)/\sigma(\gamma, n_1) = 2,2 \pm 0,8.$ Из этих отношений для $|\alpha_0/\alpha_1|$ следуют оценки $0,10 \pm 0,03$ и $0,07 \pm 0,09$ соответственно. Таким образом, примесь состояний с T=0 к состояниям с T=1, определяемая величиной $(\alpha_0/\alpha_1)^2$, в области максимума ДГР не превышает 2-3%.

Степень чистоты по изоспину состояний ДГР можно оценить и с помощью предложенной в [6] процедуры пересчета экспериментальных фотопротонных сечений самосопряженных ядер в фотонейтронные. В этой процедуре учитывается информация об орбитальном моменте вылетающих нуклонов и предполагается отсутствие смешивания по изоспину. Для пересчета используется соотношение (1), в котором полагается $\alpha_0 = 0$. Полученные таким образом парциальные фотонейтронные сечения суммируются и сравниваются с измеренными полными сечениями реакции (у, п). Хорошее согласие как по форме, так и по абсолютной величине сравниваемых сечений возможно лишь при незначительной примеси T=0 состояний к T=1 состояниям. Результаты пересчета для ⁴⁰Са приведены на рис. 1. Поскольку для такой процедуры нужны энергетические зависимости сечений реакций (у, \dot{p}_i), то использовались данные работы [3] (рис. 2). Совпадение полученного путем пересчета полного фотонейтронного сечения с экспериментальным [9] подтверждает сделанный выше вывод о высокой чистоте по изоспину состояний ДГР ядра 40Са.

Величина фотонейтронного сечения для ⁴⁰Са примерно в 5 раз меньше величины фотопротонного сечения. Это, как следует из результатов описанной выше процедуры, целиком обусловлено большим различием в энергиях отделения протона и нейтрона — соответственно 8,33 и 15,62 МэВ. Из-за высокого нейтронного порога в реакции ⁴⁰Са (γ , n) ³⁹Са практически не происходит заселение высоколежащих ($E_i > 6,5$ МэВ) уровней конечного ядра, что хорошо видно из рис. 2. Это подтверждается также данными настоящего эксперимента. Полное интегральное сечение заселения уровней ядра ³⁹Са, полученное суммированием цифр, приведенных в 7-й колонке табл. 1, составляет около 90 МэВ·мб, что исчерпывает интегральную величину фотонейтронного сечения для ядра ⁴⁰Са в области $E_{\gamma} < 30$ МэВ, равную 88 ± 8 МэВ·мб [6] (интегральное сечение фотопротонной реакции в области $E_{\gamma} < <30$ МэВ равно 470 ± 40 МэВ·мб [6]). Таким образом, данные табл. 1 содержат по существу полную информацию о нейтронных каналах распада ДГР ядра ⁴⁰Са.

Знание экспериментальных парциальных сечений и спектроскопических характеристик заселяемых состояний из реакций однонуклонного подхвата позволяет рассчитать полупрямые компоненты $\sigma_{ph}(\gamma, \varkappa_i)$, где $\varkappa = p$ или *n*, каждого парциального сечения и затем суммированием по *i* получить полупрямые компоненты полных фотонуклонных сечений. Метод определения $\sigma_{ph}(\gamma, \varkappa_i)$ детально описан в работах [6, 10, 11].

Основное и два первых возбужденных состояния ядер ³⁹К и ³⁹Са являются чистыми нуклонными дырками соответственно в подоболочках $1d_{3/2}$, $2s_{1/2}$ и $1f_{7/2}$ относительно начального ядра ⁴⁰Са. Заселение этих состояний поэтому целиком обусловлено полупрямыми распадами. Остальные заселяемые состояния ³⁹К и ³⁹Са либо вообще не являются дырочными (для них спектроскопические факторы C^2S равны нулю и поэтому не указаны в табл. 1), либо содержат лишь часть спектроскопической силы дырочного возбуждения в подоболочках $1d_{5/2}$ и $2p_{3/2}$. Парциальные сечения заселения уровней, для которых C^2S не указаны, целиком формируются за счет неполупрямых (т. е. статистических)

47

форм распада ДГР. Использование метода [6, 10, 11] показывает, что уровни ³⁹К и ³⁹Са, содержащие примесь дырки в подоболочке 2p_{3/2}, практически целиком заселяются за счет статистических форм нуклонного распада ДГР. Изобар-аналоговые пары уровней ³⁹Са и ³⁹К, содержащие значительную часть спектроскопической силы дырки в подоболочке 1d_{5/2} (*i*=18 и 22, 19 и 26, 22 и 42) ядра ⁴⁰Са с большой вероятностью заселяются за счет полупрямых распадов ДГР. Рассчитанные нами полупрямые компоненты парциальных фотопротонных сечений, полученных в работе [3], показаны на рис. 2. При этом мы использовали приведенную в работе [3] информацию о том, что при заселении уровней ³⁹К с *E_i*>4,9 МэВ вылетают преимущественно протоны с орбитальным моментом *l* = 1. Полупрямая компонента полного фотопротонного сечения приведена на рис. 1. Вероятность полупрямых распадов $\sigma(\gamma, p)$ равна 0,47, в максимуме в интегральном сечении (до 30 M₃B) - 0,55-0.60.

Доля полупрямых распадов определялась нами также и в фотонейтронном канале. Вероятность полупрямых распадов в интегральном сечении полной фотонейтронной реакции (до 30 МэВ) 0,75—0,80. Она выше, чем в фотопротонном канале в силу подавления (из-за более высокого нейтронного порога) вероятности заселения высокорасположенных уровней ³⁹Са, в которых доля полупрямых распадов минимальна.

Оценим вероятность полупрямых распадов в сечении фотопоглощения ядра ⁴⁰Са. Она находится с учетом всех возможных каналов распада ДГР — (ү, *n*), (ү, *p*), (ү, *np*), (ү, 2*p*), (ү, α) [12], (ү, т). Учитывая, что испускание двух нуклонов и сложных частиц (т и а) дает вклад в неполупрямую часть сечения фотопоглощения, получаем, что вероятность полупрямых распадов в последнем ~0,55.

Результаты работы иллюстрируют высокую информативность метода исследования ДГР, основанного на выделении парциальных каналов его распада.

СПИСОК ЛИТЕРАТУРЫ

62 G

[1] Арзибеков У. Р. и др. Ядерная физика, 1984, 40, с. 1121. [2] Ullrich H., Krauth H. Nucl. Phys., 1969, A123, р. 641. [3] Brajnik D. et al. Phys. Rev., 1974, C9, р. 1901. [4] Wu C. P., Baglin J. E. E., Firk F. W. K., Phil-Ips T. W. Phys. Lett., 1969, B29, р. 359. [5] Barker F. C., Mann A. K. Phil. Mag., 1957, 2, р. 5. [6] Капитонов И. М. Докт. дис. (НИИЯФ МГУ). М., 1983. [7] Wu C. P., Firk F. W. K., Phillips T. W. Nucl. Phys., 1970, A147, р. 19. [8] Diener E. M., Amann J. F., Paul P. Phys. Rev., 1973, C7, р. 695. [9] Bag-Iin J. E. E., Spicer B. M. Nucl. Phys., 1964, 54, р. 549. [10] Капитонов И. М. Ядерная физика, 1983, 37, с. 569. [11] Арзибеков У. Р. и др. Там же, 1985, 42, с. 1059. [12] Волков Ю. М. и др. Изв. АН СССР, сер. физ., 1983, 47, с. 182.

Поступила в редакцию 24.06.85