ной яме позволяет описать экспериментальные данные по длительности деления ²³⁸Np. Существование двух классов долгоживущих возбужденных состояний тяжелых ядер приводит к неэкспоненциальному закону их распада. Следует особо отметить, что экспериментальное определение времени протекания реакции деления позволяет изучать характеристики сильно деформированных возбужденных состояний тяжелых ядер.

СПИСОК ЛИТЕРАТУРЫ

[1] Strutinsky V. M. Nucl. Phys., 1967, A95, p. 420. [2] Strutinsky V. M., Pauli H. C. Proc. IAEA Symp. Phys. Chem. of Fission. Vienna, 1969, p. 155. [3] Юминов О. А. Тр. Всесоюз. совещ. по физ. взаимодействия заряж. частиц с кристаллами. М.: Изд-во МГУ, 1985, с. 68. [4] Вјørnholm S., Lynn J. E. Rev. Mod. Phys., 1980, 53, N 4, p. 384. [5] Grusha O. V. et al. Nucl. Phys., 1984, A429, p. 313. [6] Strutinsky V. M., Bjørnholm S. Ibid., 1969, A136, p. 1. [7] Gilbert A., Cameron A. E. W. Canad. J. Phys., 1965, 43, p. 1450. [8] Воротников П. Е. и др. Ядерная физика, 1982, 36, с. 1074.

Поступила в редакцию 24.06.85

ВЕСТН. МОСК, УН-ТА, СЕР. 3. ФИЗИКА, АСТРОНОМИЯ, 1986. Т. 27, № 1

УДК 539.172.12

ПРОТОННЫЙ ОПТИЧЕСКИЙ ПОТЕНЦИАЛ ДЛЯ ⁵³Сг ПРИ НИЗКИХ И СРЕДНИХ ЭНЕРГИЯХ

Е. А. Романовский

В настоящее время достигнут прогресс в развитии микроскопической теории оптического потенциала (ОП) и в описании взаимодействия тяжелых ионов с атомными ядрами. Для проверки справедливости этой теории и вычислений ядро-ядерных потенциалов в рамках так называемой «модели свертки» необходимы данные о параметрах нуклонных ОП в широком интервале энергий. Известно, что для описания рассеяния протонов с $E_p > 10$ МэВ ядрами с A > 40 по оптической модели (ОМ) используются параметры ОП [1], найденные из анализа данных по сечениям упругого рассеяния и поляризации при $E_p \sim 20-40$ МэВ. Для их применения при $E_p < 20$ МэВ требуется проведение дополнительных исследований, программа которых сформулирована в [2].

Настоящая работа посвящена анализу данных по рассеянию и поляризации протонов низких и средних энергий ядрами ⁵³Cr. Для нахождения параметров ОП нами сопоставлялись экспериментальные дифференциальные сечения упругого рассеяния и поляризации, а также полные сечения реакций с вычисленными по ОМ с параметрами следующего вида [1]:

$$V(r) = V_C(R_C) + V_R f(x_0) + i4a_D W_D \frac{d}{dr} f(x_D) + V_{so} \frac{\sigma l}{r} \left(\frac{\hbar}{m_{\pi c}}\right)^2 \frac{d}{dr} f(x_{so}),$$

где V_c(R_c) — кулоновский потенциал,

$$f(x_i) = (1 + \exp x_i)^{-1}; \ x_i = (r - r_i A^{1/3}) / a_i; \ R_c = r_c A^{1/3},$$
$$V_R = V_0 - \beta E_p + 0.4Z / A^{1/3} + V_1 \frac{N - Z}{A}.$$

Согласно [1], $V_0 = 54,0; W_D = 11,8-0,25 E_p + 12 (N-Z)/A; V_{s0} = 6,2; V_1 = 11,8-0,25 E_p + 12 (N-Z)/A$

=24; r_0 =1,17; r_D =1,32; r_{s0} =1,01; a_0 = a_{s0} =0,75; a_D =0,51+0,7 (*N*-*Z*)/*A*; β =0,32. Все геометрические параметры выражены в Фм, потенциалы в МэВ, $(\hbar/m_{\pi}c)^2$ =2,0 Фм², а поглощение считается чисто поверхностным.

При захвате протона ⁵³Сг образуется составное ядро ⁵⁴Мп (энергия возбуждения $E_x \cong E_p + 7,5$ МэВ), в котором возбуждаются так называемые фоновые ($T_{<}$) и изобараналоговые ($T_{>}$) состояния. Ниже мы будем анализировать экспериментальные данные по сечениям рассеяния при $E_p \sim 3,5$; 6,0; 10—12 и 16,6 МэВ ($11 \le E_x \le 24$ МэВ). Если оценить полное число уровней на 1 МэВ (ρ) по формулам модели фермигаза [3], а ширины $T_{<}$ -состояний ($\Gamma_{<}$) по формуле [4]

$$\Gamma_{<} = 14 \exp\left(-4.69 \sqrt{A/E_{r}}\right) M_{9}B$$

то значения $\rho_{<}$ и $\Gamma_{<}$ для различных E_x изменятся в пределах от $\rho_{<}=$ =8·10³, $\Gamma_{<}\sim0,4$ кэВ при $E_x\cong11$ МэВ до $\rho_{<}\sim2\cdot10^7$, $\Gamma_{<}\sim10$ кэВ при $E_x\cong24$ МэВ. При $E_p \geq 3,5$ МэВ $T_{<}$ -состояния в ядре ⁵⁴Мп полностью перекрываются (т. е. $\Gamma_{<}/D_{<}>2$ и при усреднении сечений по $\Delta E > \Gamma_{<}$ флуктуации из-за возбуждения $T_{<}$ -состояний не проявляются).

Основываясь на энергетических соотношениях теории изобараналоговых резонансов и данных о положении уровней в аналоговом ядре ⁵⁴Cr, можно сделать оценку числа «кандидатов» в $T_{>}$ -состояния. Так, при взаимодействии протонов с $E_p=3-4$ МэВ $\rho_{>}\sim10$, а при $E_p=$ =5-6 МэВ $\rho_{>}\sim30$. При $E_p\sim3-4$ МэВ в ядре ⁵⁴Мп возбуждаются $T_{>}$ -состояния с $\Gamma \sim 1$ кэВ, а при $E_x\sim20$ МэВ $\Gamma \sim40$ кэВ [5].

В [6] измерены угловые зависимости сечения и поляризации при упругом рассеянии протонов с $E_p = 16,6$ МэВ ($\Delta E \sim 0,1$ МэВ, $\Delta E > \Gamma_>$, $\Gamma_</D_<$, $\Gamma_>/D_>\gg1$). При таком усреднении флуктуации из-за возбуждения $T_<$ - и $T_>$ -состояний не проявляются. Вклад упругого рассеяния через составное ядро σ_{CE} пренебрежимо мал. Найденные в [6] параметры ОП описывают потенциальное рассеяние. Оказалось, что эти параметры в пределах 1—3% совпадают с параметрами ОП [1] ($V_R = = 52,2; r_0 = 1,18; a_0 = 0,74; W_D = 9,12; r_D = 1,28; a_D = 0,63; \sigma_r = 1164$ мб).

В [7] измерены угловые зависимости сечений упругого рассеяния протонов для $E_p = 10$ и 11 МэВ. При анализе по ОМ предполагалось, что поглощение объемное. Нами с использованием найденных в [7] параметров ОП вычислены объемные интегралы от мнимых потенциалов на нуклон J_W/AA_1 . Оказывается, что $J_W/AA_1 \sim 80$ МэВ ΦM^3 , что существенно ниже средних значений, определенных в [8] для этой области масс и энергий: $(J_W + J_D)/AA_1 = J_I/AA_1 = 125 \pm 20$ МэВ $\cdot \Phi_{M^3}$. Такие же значения J_W/AA_1 получаются по данным [9] ($E_p \sim 10 - 12$ МэВ). Отличие значений J_W/AA₁ от средних служит указанием на необходимость повторного анализа сечений рассеяния, измеренных в [7, 9]. В [9] для $\theta = 90^{\circ}$ с шагом 10 кэВ и $\Delta E \sim 10$ кэВ измерена функция возбуждения для $10 \ll E_p \ll 12$ МэВ. В функции возбуждения флуктуации обусловлены возбуждением как T_<-, так и T_>-состояний. Усредненная по $\Delta E \sim 0,5$ МэВ функция возбуждения плавно изменяется с энергией. Если по данным [9] построить функции возбуждения для $\theta \gg 90^\circ$, то оказывается, что сечения флуктуируют относительно средних значений. При $E_p = 10,27; 11,7$ и 12 МэВ значения сечений совпадают со средними. Поэтому в дальнейшем мы ограничимся лишь анализом сечений при этих значениях Е_р, рассматривая угловые зависимости при E_p = 10,27; 11,7 и 12 МэВ как средние по интервалу усреднения $\Delta E \sim 0.5$ M₃B.

Нами проведен автоматический поиск четырех параметров ОП: V_R , W_D , r_D и a_D . Параметры r_0 и a_0 , V_{s0} , r_{s0} и a_{s0} фиксировались в соот-

ветствии с [1], так как в [6] показано, что при E_p=16,6 МэВ эти параметры совпадают с параметрами ОП [1]. Найдены следующие параметры ОП: при $E_p = 10,27$ МэВ $V_R = 54,6$; $W_D = 9,47$; $r_D = 1,35$; $a_D = 0,57$. Это дает $J_D/AA_1 = 136$ МэВ Φ м³, $\sigma_r = 985$ мб. При $E_p = 11,7$ МэВ $V_R = 54,0$; $W_D = 9,58$; $r_D = 1,35$; $a_D = 0,58$ ($J_D/AA_1 = 142$ МэВ Φ м³, $\sigma_r = 142$ Мар Φ м³, $\sigma_r = 142$ Мар =1066 мб). И при $E_p = 12,0$ МэВ $V_R = 53,6$; $W_D = 9,51$; $r_D = 1,34$; $a_D = 0,61$ $(J_D/AA_1 = 144 \text{ МэВ} \cdot \Phi_{M^3}, \sigma_r = 1092 \text{ мб})$. В [10] показано, что при рассея-нии протонов с $E_p \sim 10 \text{ МэВ}$ ядрами ⁵⁴Сг величина $\sigma_{CE}(\theta)$ при $\theta > 90^\circ$ составляет ~3-5% от среднего сечения упругого рассеяния. Эти же оценки справедливы и для рассеяния протонов таких же энергий на ⁵³Cr (при $E_p \sim 12$ МэВ $\sigma_{CE} < 3\%$). Так как в [9] дифференциальные «сечения рассеяния измерены с точностью до ~5%, то мы считаем, что найденные параметры ОП описывают потенциальное рассеяние протонов ⁵³Сг. При четырехпараметрической подгонке параметры V_R , r_D , a_D оказались близкими к параметрам ОП [1]. Поэтому мы провели однопараметрическую подгонку параметра W_D , закрепив все остальные параметры в соответствии с [1]. Мы нашли, что при $E_p = 10,27$ МэВ $W_D = 9,65; I_D/AA_1 = 134$ МэВ $\cdot \Phi_{M^3}, \sigma_r = 981$ мб, при $E_p = 11,7$ МэВ $W_D =$ = 10,0; $J_D/AA_1 = 139$ МэВ·Фм³, $\sigma_r = 1044$ мб и при $E_p = 12,0$ МэВ $W_D = 10,30; J_D/AA_1 = 144$ МэВ·Фм³, $\sigma_r = 1061$ мб.

С уменьшением E_p возрастает вклад σ_{CE} и для определения параметров ОП необходимо предварительно разделить прямые и компаундные процессы. В [11] показано, что если измеряется усредненная по интервалу ΔE величина $\langle P(\theta)\sigma(\theta) \rangle_{\Delta E}$ (причем интервал ΔE таков, что происходит усреднение по большому числу состояний, характеристики которых распределены случайным образом), то $\langle P(\theta)\sigma(\theta) \rangle_{\Delta E} =$ = $[P(\theta)\sigma(\theta)]_{\pi}$, где «П» означает прямой процесс. В [12] были измерены относительные угловые зависимости сечений упругого рассеяния при 5,8 $\leq E_p \leq 6,25$ МэВ ($\Delta E \sim 0,1$ МэВ). При построении зависимостей $\sigma(\theta)/\sigma_R(\theta)$, где $\sigma_R(\theta)$ — резерфордовское сечение, предполагалось, что при $\theta = 32^\circ \sigma(\theta) = \sigma_R(\theta)$. Такая нормировка завышена примерно на

10%. Нами проведена перенормировка этих зависимостей. Следует отметить, что формы соответствующих кривых при θ≥90° изменяются с энергией. Выше было сказано, что при *Е*_р>3,5 МэВ выполняется условие $\Gamma_{<}/D_{<} \geqslant 2$. Нетрудно показать, что при усреднении по $\Delta E \sim 0,1$ МэВ флуктуации из-за возбуждения T_<-состояний должны усредняться. Поэтому изменение форм кривых $\sigma(\theta)/\sigma_R(\theta)$ с изменением Е_р связано с возбуждением в составном ядре ⁵⁴Мп Т_>-состояний. В работе [13] при $E_p \sim 6$ МэВ измерены угловые и энергетические зависимости поляризации. Данные работ [12, 13] были использованы для нахождения величин $\langle P(\theta)\sigma(\theta)\rangle_{\Delta E}$ для

Рис. 1. Значения $\langle P\sigma \rangle$ для $E_p = = 6,0$ МэВ. Сплошные кривые — расчет по ОМ (см. текст)

средней энергии $E_p \sim 6$ МэВ и интервала усреднения $\Delta E \sim 0,3$ МэВ. Эти значения представлены на рис. 1. Кривая 1 — это рассчитанная по ОМ с параметрами [1] и $W_D = 9,5$ МэВ зависимость $[P(\theta)\sigma(\theta)]_{\text{онт}}$. В пределах ошибок определения величин $\langle P(\theta)\sigma(\theta) \rangle_{\Delta E}$ наблюдается согласие с рассчитанной по ОМ зависимостью. При меньших значениях W_D такое согласие не достигается. (Для иллюстрации на рис. 1 нанесена рас-

считанная по ОМ зависимость для $W_D = 3$ МэВ — кривая 2). Используя перенормированные [12] данные, мы вычислили усредненные по интервалу 5,8—6,25 МэВ значения сечений рассеяния для средней энергии $E_p = 6$ МэВ (рис. 2, *a*, точки). На рис. 2, *a* нанесена рассчитанная по ОМ зависимость $\sigma(\theta)/\sigma_R(\theta)$ для $E_p = 6$ МэВ (кривая *I*). Из сопоставления расчетной кривой с экспериментальными данными по средним сечениям рассеяния $\langle \sigma_{\rm эксп}(\theta) \rangle$ сечение σ_{CE} найдено по формуле

$$\sigma_{CE} = 4\pi \int_{90}^{180} \left[\left\langle \sigma_{\text{эксп}} \left(\theta \right) \right\rangle - \sigma_{\text{опт}} \left(\theta \right) \right] \sin \theta \, d\theta.$$
 (1)

Оказалось, что $\sigma_{CE}(\theta)$ близко к изотропному: $\sigma_{CE}(\theta) = 9$ мб/ср, а $\sigma_{CE} = 120 \pm 20$ мб. По формуле (1) из сопоставления рассчитанной по ОМ (с параметрами [1] и $W_D = 10$ МэВ) кривой с экспериментальными данными [14] находим, что $\sigma_{CE} \cong 40 \pm 10$ мб для $E_p = 7,5$ МэВ.

Рис. 2. Угловая зависимость дифференциального сечения для $(E_p)_{cp} = = 6$ МэВ — а и для $E_p = 3,44$ МэВ — б. Сплошные кривые — расчет по ОМ (см. текст)

В работе [15] измерены угловые зависимости сечений рассеяния для 2,6 « E_p «3,44 МэВ с $\Delta E \sim 0,1$ МэВ. Так как $\Delta E \gg \Gamma_> \sim 1$ кэВ, а $\rho_> \sim 10$, то возбужденные в ⁵⁴Мп одного — двух состояний $T_>$ не может исказить форму угловой зависимости сечения. На рис. 2, б кривая 1 вычислена по ОМ для E_p =3,44 МэВ с параметрами ОП [1] н W_D =8,5 МэВ. Кривая 2 — это кривая 1, сложенная с прямой $\sigma_{CE}(\theta)$ = =5,5 мб/ср. Кривая 2 проходит по экспериментальным точкам из

[15]. Кривая 4, вычисленная с параметрами ОП [1] и $W_D = 4$ МэВ, не согласуется с этими экспериментальными значениями. В [15] измерена угловая зависимость сечения рассеяния для $E_p = 3,0$ МэВ. Из сопоставления с рассчитанной по ОМ кривой $\sigma = \sigma(\theta)$ (параметры ОП [1], $W_D = 7,5$ МэВ) находим $\sigma_{CE} = 20 \pm 10$ мб.

Для определения параметров ОП при $E_p < 3$ МэВ необходим анализ полных сечений реакций σ_r , которые при таких подбарьерных энергиях близки к сечениям реакций (p, n), т. е. $\sigma_r \cong \sigma_{p,n}$. На рис. 3 представлены экспериментальные данные из работ [16—20] по $\sigma_{p,n}$ для различных E_p . Здесь же нанесена кривая. При $E_p < 3,5$ МэВ она проходит по точкам из работ [16, 19, 20], при $3,5 < E_p < 6$ МэВ — по согласующимся между собой (в пределах ошибок измерений) значениям величин сечений из [16]. Таким способом проведенная кривая $\sigma_{p,n}(E_p)$ для ⁵³Сг близка к аналогичным кривым для реакции ⁵¹V (p, n) [21] и ⁵⁵Мп (p, n) [22]. С целью определения параметров ОП для $1,5 \le E_p \le 2,4$ МэВ проводилось сопоставление рассчитанных по ОМ (с параметрами [1], где W_D — подгоночный) σ_r с экспериментальными значениями $\sigma_{p,n}$ из [20]. Оказалось, что наблюдается близкая к линейной зависимость $W_D(E_p)$ (при $E_p = 1,5$ МэВ $W_D = 3$ МэВ, при $E_p = 2,4$ МэВ $W_D = 6,5$ МэВ).

Для проверки самосогласованности в определении параметров ОП необходимо сравнение расчетных σ_r с экспериментальными (σ_r)_{эксп-}Такое сопоставление можно сделать для $E_p < 6$ МэВ, так как

$$(\sigma_r)_{\mathsf{SKCII}} \cong \sigma_{p,n} + \sigma_{CE} + \sigma_{p,p'} + \sigma_{p,\alpha}, \qquad (2)$$

где $\sigma_{p,p'}$ и $\sigma_{p,\alpha}$ — суммарные сечения неупругого рассеяния и реакции (р, а) соответственно. Согласно [14], интегральное сечение реакций (p, α) при $E_p = 7.5$ МэВ $\sigma_{p,\alpha} = 1$ мб. При меньших E_p можно считать, что $\sigma_{p,\alpha} \sim 0$. На рис. 4 кривая 1 — это зависимость $\sigma_{p,p'}(E_p)$. Кривая Iпроведена через экспериментальные значения при $E_p = 2,3$ МэВ $(\sigma_{p,p'} =$ =1 мб [20]), 3,0 МэВ (σ_{р,р'} = 3 мб [23]), 4,5 МэВ (оцененное нами значение $\sigma_{p,p'} = 45 \pm 10$ мб по данным [24]), 6,0 МэВ ($\sigma_{p,p'} = 100 \pm 20$ мб [25]) и 7,5 МэВ ($\sigma_{p,p'} = 100 \pm 20$ мб [14]). Кривая 2 на рис. 4 — это зависимость $\sigma_{CE}(E_p)$, проведенная через найденные выше значения при $E_p = 7,5$; 6,0; 3,44 и 3,0 МэВ. Точки при $E_p = 5$ и 4 МэВ получены как оценочные на основе анализа данных работы [12]. Кривая 3 это рассчитанная по ОМ (с параметрами ОП [1] и W_D , найденными в настоящей работе) зависимость $\sigma_r(E_p)$. На основе данных $\sigma_{p,p'}$, σ_{CE} - и $\sigma_{p,n}$ -реакций по формуле (2) нами найдены значения (σ_r)_{эксп} (см. рис. 4). Из рис. 4 видно, что расчетная зависимость проходит через экспериментальные значения (ог) эксп, если при определении этих величин использовать зависимость $\sigma_{p,n}(E_p)$ (см. рис. 3, 1). Для найденных выше значений W_D и $E_p \leqslant 16,6$ МэВ на рис. 5 представлена зависимость $J_D(E_p)/AA_1 = 13.9 W_D(E_p)$.

При $E_p \ge 12$ МэВ рассчитанная по формулам [1] зависимость $J_D/AA_1 = J_D(E_p)/AA_1$ совпадает с определенной нами (рис. 5, 2), а при $E_p < 12$ МэВ найденные на основе [1] значения J_D/AA_1 сильно отличаются (см. рис. 5, 1).

Основываясь на анализе $\sigma_{p,n}$ по ОМ, авторы работы [26] предложили для $45 \ll A \ll 80$ и $4 \ll E_p \ll 180$ МэВ новый набор параметров ОП, отличный от [1] и [27]. Согласно [26], параметры ОП предложено находить, используя следующие соотношения:

$$J_R/AA_1 = 509 \exp(-0.006E_p) M_{9}B \cdot \Phi_{M^3}; r_0 = 1.17, a_0 = 0.75, V_1 = 24, (3)$$

$$J_I/AA_1 = 102\{1 - \exp(-0.21 E_p)\}M \ni B \cdot \Phi_{M^3}; r_D = 1.32, a_D = 0.58.$$
(4)

Построенная по формуле (4) кривая 3 на рис. 5 не согласуется с кривой 2. Если по формулам (3), (4) для $E_p = 6$ и 3,44 МэВ найти значения V_R и W_D и вычислить по ОМ соответствующие зависимости $\sigma = \sigma(\theta)$, то нетрудно видеть (см. кривые 3 на рис. 2, а и б), что рас-

Рис. 4. Энергетические зависимости суммарных интегральных сечений упругого рассеяния прото-нов через составное ядро ($\sigma_i = \sigma_{CE}$) — \times , реак-ции (p,p') ($\sigma_i = \sigma_{p,p'}$) — и полного сечения реакции $(\sigma_i = \sigma_r) - \bullet$. О кривых 1, 2, 3 см. пояснения в тексте

Рис. 5. Значения J_I/AA₁ для различных E_p: • значения, вычисленные с использованием параметров ОП настоящей работы, **П** — [6], ∇ — [7], × — [9], □ — [25]. Ломаная 1 найдена согласно [1], о нашей кривой 2 см. пояснения в тексте, кривая 3 вычислена по формуле (4)

четные кривые невозможно согласовать с экспериментальными значениями сечений рассеяния.

На основе проведенного анализа можно сделать следующие выводы: в области низких и средних энергий экспериментальные данные по сечениям упругого рассеяния, поляризации и полным сечениям реакций могут быть описаны в рамках ОМ, причем все параметры ОП, кроме W_D , следует брать из [1], а величину W_D определить в соответствии с представленной на рис. 4 (кривая 1) зависимостью $J_D/AA_1 = J_D(W_D)/$ АА1. Параметры ОП, найденные в [26], непригодны для описания данных по рассеянию протонов низких и средних энергий ⁵³Cr.

Представляет интерес измерение сечений реакций (р, л), (р, 2л) и др. под действием протонов низких и средних энергий и полных сечений реакций при Е_p>10 МэВ по методике ослабления интенсивности пучка для проверки соответствия экспериментальных полных сечений реакций с вычисленными по ОМ.

СПИСОК ЛИТЕРАТУРЫ

[1] Becchetti F. D., Greenlees G. W. Phys. Rev., 1969, 182, р. 1190. [2] Walter R. L. et al. In: Proc. Polarization Phenomena in Nuclear Physics 1980. Part 1. American Inst. of Physics. N. Y., 1981, p. 413. [3] Gilbert A., Came-ron A. C. W. Can. J. Phys., 1965, 43, p. 1446. [4] Stokstad R. G. In: Proc. In-tern. Conf. on Reactions between Complex Nuclei. V. 2. North-Holland, Amsterdam, 1974, p. 327. [5] Berg G. et al. Nucl. Phys., 1975, A254, p. 169. [6] Mayer R. et al. Ibid., 1971, A177, p. 205. [7] Andrews P. T. et al. Ibid., 1964, 56, p. 449. [8] Kailas S., Gupta S. K. Phys. Lett., 1977, 71B, p. 271. [9] Legg J. C., Scott H. D., Mehta M. K. Nucl. Phys., 1966, 84, p. 398. [10] Ernst J., Har-ney H. L., Kotajima K. Ibid., 1969, A136, p. 87. [11] Thompson W. J. Phys. Lett., 1967, 25B, p. 454. [12] Романовский Е. А. и др. Изв. АН СССР, сер. Физ., 1973, 37, с. 88. [14] Shore B. W., Wall N. S., Itvine J. W. Phys. Rev., 1961, 123, p. 276. [15] Головия В. Я. и др. Ядерная физика, 1966, 4, с. 770. [16] John-son C. H., Galonsky A., Inskeep C. N. ORNL-2910, 1960. [17] Дряпачен-ко И. П. и др. Ядерная физика, 1967, 6, с. 440. [18] Дряпаченко И. П., Не-мең О. Ф., Пилипенко В. А. УФН, 1971, 16, с. 1947. [19] Wiest J. E. et al. Phys. Rev., 1971, C4, p. 2061. [20] Gardner H. J. et al. Aust. J. Phys., 1981, 34, p. 25. [21] Романовский Е. А. Ядерная физика, 1985, 41, с. 607. [22] Viyo-gi Y. P. et al. Phys. Rev., 1978, C18, p. 1178. [23] Кривоносов Г. А. и др. Ядерная физика, 1976, 24, с. 461. [24] Рогter W. C. et al. Phys. Rev., 1958, 112,

тр. 472. [25] Александров Ю. А. и др. Изв. АН СССР, сер. физ., 1972, 36, с. 2648. [26] Kailas S. et al. Phys. Rev., 1979, C20, p. 1272. [27] Регеу F. G. Ibid., 1963, 131, p. 745.

Поступила в редакцию 18.07.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 1

УДК 539.17.01:539.186

ТРЕХТЕЛЬНЫЙ ПОДХОД К РЕАКЦИЯМ ПЕРЕДАЧИ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЯДЕРНОЙ И АТОМНОЙ ФИЗИКЕ

Г. В. Аваков, А. Р. Ашуров, Л. Д. Блохинцев, А. М. Мухамеджанов, Д. А. Савин

1. Введение. Многие задачи в ядерной и атомной физике могут рассматриваться как проблема трех тел. Математический аппарат для описания систем трех частиц, взаимодействующих посредством короткодействующих потенциалов, был создан Л. Д. Фаддеевым [1]. В последние годы разработаны методы, позволяющие путем модификации уравнений Фаддеева учесть дальнодействующее кулоновское взаимодействие в трехчастичных системах. К таким методам относятся: 1) метод обращения, предложенный А. М. Веселовой и применимый при энергиях ниже трехчастичного порога [2]; 2) подход, развитый С. П. Меркурьевым, применимый и выше трехчастичного порога [3]; 3) метод Альта — Зандхаса — Цигельмана (АЗЦ) [4] и близкий к нему метод работы [5]; фредгольмовский характер полученных в этих методах уравнений доказан пока только ниже трехчастичного порога.

В настоящей работе формализм АЗЦ применяется для описания а) систем, в которых наряду с кулоновским существует и короткодействующее ядерное взаимодействие, и б) систем, в которых кулоновское взаимодействие является единственным и определяет всю динамику; для последних систем уравнения АЗЦ требуют определенной модификации.

2. Кулоновские эффекты в фаддеевском подходе к реакциям передачи нуклонов при низких энергиях. В настоящем разделе путем решения уравнений АЗЦ для системы трех частиц, две из которых одноименно заряжены, а третья нейтральна, рассматривается реакция передачи нуклона ниже трехчастичного порога. Насколько известно авторам, такие расчеты проводятся впервые. Уравнения АЗЦ для реакции ($\beta\gamma$) + $\alpha \rightarrow \beta$ + ($\alpha\gamma$) имеют вид [4]

$$X_{\beta\alpha} = Z_{\beta\alpha} + \sum_{\delta=1,2,3} X_{\beta\delta} \widetilde{G}_{\delta} Z_{\delta\alpha},$$

где ($\beta\gamma$) — связанное состояние частиц β и γ , $Z_{\beta\alpha}$ — эффективный потеницал, $X_{\beta\alpha}$ — амплитуда реакции, \tilde{G}_{δ} — эффективная двухчастичная функции Грина. При вычислении $Z_{\beta\alpha}$ и $X_{\beta\alpha}$ соответствующие операторы берутся в обкладках из кулоновских искаженных волн. Если передаваемая частица γ нейтральна, эффективный потенциал $Z_{\beta\alpha}$ есть сумма амплитуд полюсной и треугольной диаграмм, «искаженных» двухчастичным» («оптическим») кулоновским взаимодействием в начальном и конечном состояниях. Для упрощения расчетов эта сумма аппроксимировалась перенормированной амплитудой полюсной диаграммы с помощью формул (12) и (13) работы [6]. В случае передачи заряжен-