Оценка расходимости излучения по размерам световых пятен в дальней зоне показала полное равенство расходимостей осевых $\text{TEM}_{m\,n}$ - и М-мод при условии заполнения ими внутренней апертуры резонатора. Практический интерес представляет генерация на М-модах, формирующих на выходе систему параллельных пучков. Такие моды могут возбуждаться в полуконфокальном резонаторе. На рис. 2, б показана плоскостная траектория лучей в полуконфокальном резонаторе, соответствующая М-моде со значениями N=4, K=1. Структура поля такой моды для дальней зопы приведена на рис. 1, κ . Два периферийных участка структуры образованы неаксиальными лучами I, 2, а центральный — параллельными лучами J, 4 (см. рис. 2, б). В области центрального участка четко видны три интерференционные полосы, появляющеся в результате наложения параллельных пучков. На рис. 1, Λ , м приведены голограммы центрального участка, который образован соответственно синфазными и противофазными параллельными пучками. Форма полос на голограммах говорит о том, что параллельные пучки формируют в дальней зоне аксиальную волну со сферическим фронтом. Расходимость этой волны, как видно из рис. 1, κ , существенно меньше расходимость всей совокупности пучков, распростравяющихся от выходного зеркала. Последнее обстоятельство указывает на возможность значительно улучщить расходимость излучения путем вывода генерируемой энергии на параллельных пуч-ках

СПИСОК ЛИТЕРАТУРЫ

[1] Ramsay A., Degnan J. Appl. Opt., 1970, 9, N 2, р. 385. [2] Киселев В. А. Радиотехн. и электроника, 1971, № 1, с. 134. [3] Горячев С. Б. и др. Письма в ЖТФ, 1984, 10, с. 429. [4] Davis L. W. Appl. Phys. Lett., 1967, 10, N 11, р. 301. [5] Kogelnik H., Li T. Appl. Opt., 1966, 5, N 10, р. 1550.

> Поступила в редакцию 13.05.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, т. 27, № 2

ГЕОФИЗИКА

УДК 550.382.3

ОСОБЕННОСТИ МАГНИТНЫХ СВОЙСТВ ОКЕАНСКИХ СКВАЖИННЫХ БАЗАЛЬТОВ ПЛАТО ВОРИНГ

И. В. Кашинская, К. В. Попов, В. И. Трухин

(кафедра физики Земли)

Центральное место в современных моделях разрастания дна океанов (спрединга) и тектовики плит занимает гипотеза Вайна и Мэтьюза (BM), согласно которой океанская кора, последовательно формирующаяся в осевых зонах срединно-океанических хребтов, фиксирует инверсии геомагнитного поля как функцию времени. По гипотезе ВМ информацию о скорости спрединга и хронологии магнитных инверсий можно получить, анализируя знакопеременные динейные магнитные аномалии, основным источником которых считается остаточный магнетизм базальтового слоя 2 океанской земной коры [1].

Современные исследования горных пород океанского дна показали, что наряду с горизонтальным чередованием противоположно намагниченных блоков слоя 2, что соответствует основным положениям гипотезы спрединга, имеет место вертикальное чередование прямо и обратно намагниченных пород в скважинах глубоководного бурения до глубины 500—600 м [2, 3]. Это указывает на то, что представление слоя 2 как однородно намагниченного слоя океанских базальтов толщиной 0,5— 2 км математически удобно, но физически нереально [2, 3].

В настоящей работе проведены магнитные исследования образцов подводных пород из скважин 338 и 342, пробуренных в 38-м рейсе

61

НИС «Гломар Челленджер» (1974 г.) на плато Воринг (западная часть Норвежского моря). Задачей исследования было установление особенностей магнитных свойств прямо и обратно намагниченных вертикальных участков в базальтовых кернах, что необходимо для решения проблемы происхождения прямой и обратной естественной остаточной намагниченности I_n базальтов плато Воринг. Для решения этой задачи путем комплексных изотермических и термомагнитных исследований определялся компонентный состав I_n и фазовый состав ферримагнитной фракции образцов коллекции.

Коллекция, изучавшаяся в работе, состояла из 23 образцов: 15 из скважины 338 и 8 из скважины 342. Минералогический и петрохимический анализы базальтов плато Воринг приведены в [4]. Абсолютный возраст исследованных образцов составлял для скважины 338 $46,6\pm$ $\pm 2,5$ млн. лет, для скважины 342 примерно 44 млн. лет [5].

Определялись следующие магнитные параметры: I_n , начальная магнитная восприимчивость \varkappa , намагниченность насыщения I_s , остаточная намагниченность насыщения I_{rs} , остаточно-коэрцитивная сила H_{cr} , постоянные магнитной вязкости S_{VE} и S_{V0} , определяемые для естественного и нулевого магнитных состояний соответственно [6]. По полученным данным рассчитывались наклонение j_0 намагниченности I_n и параметр Кенигсбергера $Q_n = I_n/(\varkappa H_r)$, где $H_r = 0,5$ Э. Были получены также зависимости $I_n(h)$, $I_n(T)$, $I_s(T)$, $I_{rs}(T)$, где h — напряженность переменного магнитного поля, T — температура.

Остаточная намагниченность образцов измерялась на астатическом и индукционном магнитометрах с относительной погрешностью измерений 5%. H_{cr} определялась на автоматической импульсной установке [7] с относительной погрешностью 2%. Средняя относительная погрешность значений \varkappa , определенных с помощью \varkappa -метра KLY-2 (ЧССР), составляла 0,3%. Температурные зависимости $I_s(T)$ получены на вибрационном магнитометре с пределами измерения от 10⁻⁴ до 10² Гс в поле 2,9 кЭ. Максимальная погрешность определения I_s не превышала 4%. Зависимость $I_{rs}(T)$ определялась на магнитомодуляционном термомагнитометре [8] с точностью до 10⁻⁵ Гс. Погрешность измерения температуры в динамическом режиме составляла $\sim 4^{\circ}$ С.

Результаты изотермических измерений магнитных характеристик базальтов коллекции сведены в таблицу. Для обеих скважин наблюдается немонотонная зависимость величин I_n , \varkappa , Q_n , H_{cr} , I_s образцов от глубины их залегания. Для всех образцов параметр Q_n изменяется от 1 до 15, что подтверждает преобладающий вклад в магнитные аномалии поля, обусловленного \mathbf{I}_n . Средние арифметические значения I_n , \varkappa , Q_n для коллекции близки к соответствующим средним по Северной Атлантике [2].

О характере доменной структуры и о размерах ферримагнитных зерен можно судить по величине отношения $R = I_{rs}/I_s$. Данные таблицы $(R \ge 0,1)$ указывают на преобладание псевдо- и однодоменных частиц в ферримагнитной фракции образцов, что подтверждается также сравнительно высокими значениями $H_{cr} \approx 200-300$ Э [9]. Для образцов 338/3, 338/4, 338/12, 338/13, 342/2, 342/5 предположение об однодоменности их магнитных зерен подтверждено с помощью термомагнитного критерия [10].

Расчет показал, что в обеих скважинах наклонение *j*₀ имеет как отрицательный, так и положительный знаки (см. таблицу). (Как общепринято, за положительное принималось наклонение, соответствующее наклонению современного магнитного поля в Северном полушарии и измеряемое углом, отсчитываемым от горизонтальной плоскости вниз

1 1	•				
Ŷ	II Фазв	525 535 535 535 535 535 535 535 535 535		550 540 550 550 550 550 550 550 550 550	
r_n	L Фаза	275 275 315 315 315 316 380		270 250	
, v	II Фаза	530 530 530 530 535 535 535 535 535 535		530 530 540 550 550	
r ₆ .	I фаза	2850 2855 370 315 315 315 315 3160		350 215 250 250 250	
	II Фаза	550 550 550 550 550 550 550 550 550 550		550 560 560 560 550 560 550 560 550 560 550 560 550 560 550 560 550 560 550 560 550 55	
θ, •	1 фаза	340 335 335 335 335 335 340 310/450 310/450 310/450 310/450 310/450	<u>·</u>	3,15 320 320 310 310	
	e vo.	3000,220 3000,220 3000,200 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 300,2000 30000000000		9, 7 9, 6 9, 7 9, 7 9, 7	
	sve 3	0000 000 000 0000 0000 000 0000 0000 0000 0000		0000 80	i
	24	00,128 00,288 00,0000000000	<u>0,23</u>	0,12 0,12 0,18 0,18 0,18 0,12 0,12 0,12	0,2
	Γc·cμ ^a /r	0,16 0,17 0,13 0,11 0,13 0,13 0,13 0,13 0,13 0,13	0,15	0,12 0,06 0,07 0,12 0,12 0,12 0,12	0,12
	Is. Fc·cm [•] /r	00000000000000000000000000000000000000	0,65	0,45 0,33 0,33 0,38 0,38 0,38 0,38 0,38 0,38	0,60
	даў. Н	226 234 3296 3296 3296 329 308 312 170 312 107 107 104 104	230	152 152 190 94 94 374 374 370	217
	91	$\begin{array}{c} +++\\ -23\\ +12\\ +23\\ +12\\ +12\\ +12\\ +13\\ +13\\ +13\\ +13\\ +13\\ +13\\ +12\\ +12\\ +12\\ +12\\ +12\\ +12\\ +12\\ +12$		8533776 853776 853776	
	.us	45555468725140-88	7,1	5000010000	4,4
	ж. 103, ед. СГСМ	$\begin{array}{c} 1,378\\ 1,050\\ 2,072\\ 0,492\\ 0,557\\ 0,943\\ 0,557\\ 0,943\\ 0,557\\ 0,$	1,104	2,02 1,00 0,673 0,785 0,785 0,965 1,087 0,952	1,025
:	/ _n .10 ³ , Γc	2,830 7,663 7,766 7,663 7,766 7,776 7,7777 7,776 7,7777 7,7777 7,7777 7,7777 7,77777 7,777777	4,216	3,43 1,298 3,35 4,74 4,74 4,74	2,93
	Номер образца	338/5 338/5 338/6 338/6 338/6 338/6 338/10 338/11 338/11 338/14 338/14 338/16 338/16 338/16 338/16	Среднее по скважине 338	342/1 342/2 342/3 342/5 342/5 342/5 842/7	Среднее по скважине 342

в данной точке земной поверхности.) Для скважины 338 одиннадцать образцов имеют отрицательный знак j_0 , четыре — положительный. Для скважины 342 наклонение I_n имеет знак минус у шести образцов и плюс — у двух (см. таблицу). Средние величины j_0^{-ep} , рассчитанные по отрицательным (преобладающим) магнитным наклонениям, составляют для базальтов скважин 338 и 342 соответственно —40,9±3,4 и —39,2±13,4°. Близкие значения j_0^{-ep} свидетельствуют о том, что базальты коллекции формировались в одно и то же геологическое время, если принять, что в это время геомагнитное поле имело направление, противоположное современному. Однако при таком предположении остается неясным происхождение прямой намагниченности у четверти образцов скважин.

Рис. 1. Изменение модуля I_n (1) и Z-компоненты I_n (2) в процессе размагничивания для двухкомпонентного по I_n отрицательно (a) и положительно (б) намагниченного образцов и для однокомпонентного по I_n отрицательно намагниченного (b) образца. На этом и следующих рисунках кривые нормированы на значения соответствующих величин при комнатной температуре

Исследование характера изменения I_n при размагничивании образцов в переменном поле h (рис. 1) показало, что вид зависимости Z-компоненты I_n от h в случае положительно намагниченных образцов (см. рис. 1, δ) позволяет представить Z-компоненту в виде суммы $Z = Z^+ + Z^-$, где Z^+ — более интенсивная, но менее стабильная компонента Z, отвечающая за положительный знак магнитного наклонения данных образцов, Z^- — более стабильная часть Z.

Так как компонента Z^+ может иметь магнитовязкую природу, были проведены эксперименты по определению на образцах базальтов постоянных магнитной вязкости, величины которых оказались в пределах от 0 до 10 Э (см. таблицу). Для всех исследованных образцов выполняется неравенство $S_{V0}>S_{VE}$; это, согласно [11], свидетельствует о том, что после своего образования базальты скважин не подверглись значительным *pT*-воздействиям. Значения величин S_V у «плюс» и «минус» образцов приблизительно одинаковы (см. таблицу). Оценки с использованием параметров S_{V0} [6] показывают, что для получения вязкой остаточной намагниченности, равной Z^+ , требуется время, на много порядков превосходящее возраст пород скважин. Однако полностью

исключить возможность влияния магнитовязких процессов на формирование положительной компоненты Z⁺ нельзя, так как механизм создания I_{rv} в условиях лаборатории может не точно соответствовать образованию вязкой намагниченности in situ.

Значения точек Кюри Θ , блокирующих температур T_6 , а также температур T_n , соответствующих точкам перегиба кривых $I_n(T)$, приведены в таблице. На рис. 2 представлены два основных типа кривых $I_s(T)$, $I_{\tau s}(T)$, $I_n(T)$ двухфазных образцов коллекции.

Анализ данных термомагнитных исследований говорит о том, что приблизительно половина образцов скважин в исходном состоянии

Рис. 2. Термомагнитные кривые двухфазных образцов коллекции $I_s(T)$ (1); $I_{rs}(T)$ (2) и $I_n(T)$ (3). Кривые типа а характерны для скважины 338, типа $\overline{6}$ — для скважины 342

имеет две магнитоминералогические фазы: первая характеризуется Θ и T_6 , лежащими в интервале 260—380° С, вторая имеет Θ и T_6 порядка 540—560° С (см. таблицу). Наличие высокотемпературной фазы в исходном состоянии образцов подтверждается существованием точки $T_{6,\pi}$ ~540° С на кривых $I_{rs}(T)$ и $I_n(T)$, которые получены в нулевом магнитном пространстве. Характерно, что точки перегибов $I_s(T)$ соответствуют температурам T_{π} и T_6 , определенным по зависимостям $I_n(T)$ и $I_{rs}(T)$ (см. таблицу и рис. 2).

Интересно отметить, что у двух обратно намагниченных образцов 338/12- и 338/13- на кривых $I_{rs}(T)$ фиксируется лишь низкотемпературная фаза с T_5 , равной 315 и 320° С соответственно, а кривые $I_s(T)$ имеют сложный вид в области температур 400—500° С (рис. 3, a). Температурный ход кривых парциальных термоостаточных намагниченностей $I_{r410°C}^{450°C}$, созданных в поле H=1 Э, для этих образцов (рис. 3, б) свидетельствует о наличии частичного самообращения. Кривые зависимости от температуры парциальных $I_{r\Delta T_i}$, созданных в других температурных интервалах, имеют нормальный вид.

Опыты по ступенчатым нагревам базальтов коллекции в немагнитном пространстве дали следующие результаты. Для образца $342/5^+$ нагрев до температуры 300° С привел к смене знака j_0 (рис. 4, 6). Зависимости направляющих углов I_n образца $342/1^-$ (две магнитные фазы по I_s) от температуры при последовательных нагревах указывают на поворот I_n относительно системы координат, связанной с ребрами кубического образца (рис. 4, *a*). У однофазных образцов, имеющих однокомпонентный состав I_n , направляющие углы I_n относительно выбранной системы координат при нагревах практически не меняются.

Таким образом, сравнительный анализ результатов изотермических и термомагнитных исследований базальтов коллекции позволяет заключить:

1) двухкомпонентный состав In базальтов скважин соответствует двухфазному составу ферримагнитной фракции данных образцов;

Рис. 3. а — Кривые зависимостей $I_s(T)$ (1) и $I_{rs}(T)$ (2) образцов 338/12⁻ и 338/13⁻. б — Температурный ход парциальных термоостаточных намагниченностей тех же образцов: $I_{r410^{\circ}C}^{450^{\circ}C}(1)$, $I_{r450^{\circ}C}^{500^{\circ}C}(2)$, созданных в поле H=1 Э

2) образцы, имеющие «аномальный» для скважин знак магнитного наклонения j_0 (т. е. знак плюс), обладают двухкомпонентным по \mathbf{I}_n и двухфазным по I_{rs} и I_s магнитоминералогическим составом, причем формирование компоненты Z^+ вектора \mathbf{I}_n данных образцов не может быть объяснено магнитной вязкостью. Среди обратно намагниченных есть образцы, имеющие как одно-, так и двухкомпонентный состав \mathbf{I}_n ;

3) менее стабильной по отношению к переменному магнитному полю компоненте Z^+ вектора I_n прямо намагниченных образцов соответствует магнитоминералогическая фаза с меньшей температурой Кюри, т. е. можно предположить, что за формирование положительного, «аномального» для скважин, знака j_0 соответствующих образцов коллекции ответственна низкотемпературная, низкокоэрцитивная фаза.

Необходимо заметить, что полностью ответить на вопрос о происхождении низко- и высокотемпературной магнитоминералогических фаз базальтов коллекции на основе только магнитного анализа нельзя [12]. Однако, сопоставляя полученные нами результаты с многочисленными данными, имеющимися в литературе, можно заключить, что однофазные по I_s и I_{rs} образцы с $\Theta \sim 540-560^{\circ}$ С подверглись высокотемпературному окислению [6, 12]. Признаки высокотемпературного окисления, выявленные примерно у половины образцов скважин, указывают на возможность образования плато Воринг в континентальных условиях, что подтверждает точку зрения Удинцева [5] по данному вопросу.

66

Вид термомагнитных кривых $I_{rs}(T)$, $I_s(T)$ при первом и последующих нагревах двухфазных образцов позволяет сделать вывод, что их низкотемпературная фаза соответствует титаномагнетиту, находящемуся на стадии низкотемпературного окисления [6, 12]; высокотемпературная фаза, согласно [12], могла возникнуть как в момент образования пород, так и в процессе вторичных минералогических изменений.

Компонента Z⁺ образцов с прямой I_n может иметь чисто геофизическое происхождение, т. е. она могла образоваться в геомагнитном поле прямой полярности. При такой интерпретации взаимодействие

Рис. 4. Кривые температурных зависимостей модуля I_n (1), \varkappa (2) и двух направляющих углов j_0 (3), β (4) вектора I_n образцов $342/1^-$ (a) и $342/5^+$ (б) при ступенитатых нагревах

между низко- и высокотемпературной магнитоминералогическими фазами (ведь все прямо намагниченные образцы коллекции двухфазны!) для формирования знака j_0 несущественно. Однако напомним, что два образца коллекции, 338/12 и 338/13, имеющие однокомпонентный состав I_n и одну низкотемпературную магнитоминералогическую фазу, намагничены отрицательно, а аномальный вид кривых $I_{r\Delta T_i}$ данных образцов (см. рис. 3, б) связан с разрушением при нагреве низкотемпературной фазы и формированием высокотемпературной. Добавим к этому, что двухфазные образцы намагничены как прямо, так и обратно. Следовательно, логично заключить, что именно взаимодействие между фазами является причиной наличия среди базальтов скважин 338 и 342 образцов с разными знаками j_0 .

Представляется возможным, что возникновение высокотемпературной, дочерней фазы привело в случае положительно намагниченных образцов к самообращению in situ вектора намагниченности материнской, низкотемпературной фазы. Взаимодействие между фазами, обусловившее обращение In, может осуществляться по магнитостатическому механизму (механизм самообращения, впервые предложенный Грабовским [13], а также Каваи, Куме и Сасаямой [14]). Однако данная интерпретация полученных экспериментальных результатов нуждается в дальнейшей более детальной разработке.

СПИСОК ЛИТЕРАТУРЫ

[1] Ле Пишон К., Франшто Ж., Боннин Ж. Тектоника плит. М.: Мир, 1977. [2] Lowrie W. J. Geol. Soc., 1977, 133, р. 61. [3] Johnson H. P., Мег-ril R. T. Earth and Plan. Sci. Lett., 1978, 40, р. 263. [4] Харин Г. С. В кн.: Ре-зультаты глубоководного бурения в Атлантическом океане в 38-м рейсе «Гломара Челленджера». Литология и петрография. М.: Наука, 1979, с. 162. [5] Геология дна мирового океана. Атлантика. Биостратиграфия и тектоника. Под ред. Г. Б. Удинцева. М.: Наука, 1982. [6] Кудрявцева Г. П., Гаранин В. К., Жиляева В. А., Трухин В. И. Магнетизм и минералогия природных ферримагнетиков. М.: Изд-во МГУ, 1982. [7] Трухин В. И. и др. Изв. АН СССР. Физика Земли, 1984, № 9, с. 57. [8] Бураков К. С. Там же, 1977, № 5, с. 92. [9] Щербаков В. П., Щербакова В. В. В кн.: Решение геофизических задач геомагнитными методами. М.: Наука, 1980, с. 136. [10] Большахов А. С., Щербакова В. В. Изв. АН СССР. Физика Земли, 1979, № 2, с. 38. [11] Трухин В. И. В кн.: Кора и верхняя мантия Земли. Вын. 2. М.: Изд-во МГУ, 1975, с. 208. [12] Магнетизм и условия об-разования изверженных горных пород. Под ред. Г. Н. Петровой. М.: Наука, 1975. [13] Грабовский М. А., Пушков А. Н. Изв. АН СССР, сер. геофиз., 1954, № 4, с. 320. [14] Нагата Т. Магнетизм горных пород. М.: Мир, 1965.

Поступила в редакцию 18.02.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1986, т. 27, № 2

УДК 551.465.71

К ВОПРОСУ ОБ ОБРАЗОВАНИИ ПЕРИОДИЧЕСКИХ СТРУКТУР ПРИ БОКОВОЯ КОНВЕКЦИИ В СОЛЕНОЯ ВОДЕ

В. М. Блинков, А. М. Гусев

(кафедра физики моря и вод суши)

Изучение условий образования и развития слоистых структур при термоконцентрационной конвекции является сейчас предметом интенсивного исследования, главным образом из-за океанологических приложений. Предположение о том, что одним из механизмов образования таких структур может быть боковая конвекция, было высказано в работе [1]. Эффективность этого механизма в океане подтверждается натурными наблюдениями [2, 3], а также экспериментами по моделированию таяния айсбергов [4].

Пусть устойчиво стратифицированная соленая вода заполняет прямоугольный бассейн длиной L и высотой H. Ширина бассейна предполагается бесконечно большой. Рассмотрим движение жидкости при небольших отклонениях от равновесного состояния, вызванных неодинаковым нагреванием боковых стенок, т. е. когда $\Delta \rho_r / \Delta \rho_B \ll 1$. Здесь $\Delta \rho_{\rm r} = \rho_0 \alpha \Delta T$ и $\Delta \rho_{\rm B} = \rho_0 \beta \left(ds_{\rm p}/dz \right) H$ — характерные разности плотностей по горизонтали и вертикали, ро -- среднее значение плотности, а и β — коэффициенты термического расширения и изменения плотности на единицу солености, ΔT — разность температур между боковыми стенками. Экспериментально и теоретически показано, что в бассейне возникает течение ячейковой формы. Размеры этой первоначальной ячейки равны размерам бассейна.

68