Были проведены оценки микроскопической подвижности µ инжектированных носителей в кристаллах с использованием времени пролета носителей через объем кристалла. Согласно теории ТООЗ, время пролета связано с характеристиками диэлектрического диода соотношением [1]

$$t\cong\frac{4}{3}\frac{d^2}{\mu U}.$$

Для времен пролета, определенных при напряжениях смещения U=0,5и 0,9 В, подвижность имеет значение $(1,3\mp0,1)\cdot10^2 \text{ м}^2/(\text{B}\cdot\text{c})$. Это значение существенно превосходит обычно приводимые в литературе данные, полученные с помощью эффекта Холла [8]. Есть, однако, работа [9], в которой приведены оценки подвижности, близкие к нашим, и они также определены из анализа инжекционных токов. Следует, кроме того, иметь в виду, что рутил является кристаллом с выраженной анизотропией, что делает затруднительным использование эффекта Холла для измерения подвижности.

Суммируя все сказанное, можно заключить, что измерение / пролетных эффектов в режимах ТООЗ не только позволяет подтвердить наличие инжекции в материале, но и использовать это как метод измерения подвижности инжектированных носителей в неизвестных материалах.

СПИСОК ЛИТЕРАТУРЫ

[1] Shao J., Wright G. T. Solid — State Electr., 1961, 3, р. 291. [2] Wright G. T. Ibid., 1966, 9, р. 1. [3] Chisholm C. H., Yeh C. S. Electr. Lett., 1968, 4, р. 498. [4] Dascaly D. Ibid., 1969, 5, р. 196. [5] Девятков М. Н., Овчинникова Г. И. Радиотехн. и электроника, 1977, 22, № 6, с. 1239. [6] Лучанский Г. П. Химия титана. Л.: Химия, 1971. [7] Ламперт М., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973. [8] Богомолов В. И., Жузе В. П. ФТТ, 1983, 5; с. 3285. [9] Greener E. H., Whitmore D. H. J. Appl. Phys., 1961, 32, р. 1320. [10] Эйтель В. Физическая химия силикатов. М., 1962.

Поступила в редакцию 13.03.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 3

ОПТИКА И СПЕКТРОСКОПИЯ

УДК 539.293.011.23

О РАСПРОСТРАНЕНИИ СВЕТОВОГО ИМПУЛЬСА В ПОЛУПРОВОДНИКЕ

Т. М. Ильинова, Т. В. Ищенко, И. М. Сорокина

(кафедра общей физики и волновых процессов)

1. Проблеме резонансного взаимодействия света с полупроводником уделяется большое внимание [1—9].

В обзоре [7] цитируются работы, в которых используется двухуровневая модель среды. В последние годы исследовалась двухзонная модель полупроводника в приближении заданного поля накачки [4—6]. В работах [8, 9] решена самосогласованная задача о распространении слабого по энергии ($W < W_s$, где W_s — энергия насыщения) светового импульса в двухзонном полупроводнике в предельных случаях быстрой и медленной электрон-фононной релаксации. В данной статье в рамках той же модели решена самосогласованная задача при учете электрон-электронной релаксации.

2. Самосогласованная задача некогерентного фотовозбуждения (длительность импульса $\tau_{\rm H} \gg T_2$, где T_2 — время фазовой памяти) прямозонного полупроводника, осуществляемого из валентной зоны тяжелых дырок в зону проводимости, полностью описывается следующей системой уравнений [6]:

$$\frac{\partial f_1(\varepsilon, t, z)}{\partial t} = S_R[f_1] + S_{eh}[f_1] + S_{ef}[f_1] - \frac{\alpha E^2(t, z) N(\varepsilon, t, z)}{1 + A_1^2(\varepsilon - \varepsilon_0)^2}, \qquad (1)$$

$$\frac{\partial f_2\left(\frac{m_e}{m_h}\varepsilon, t, z\right)}{\partial t} = S_R[f_2] + S_{he}[f_2] + S_{hf}[f_2] - \frac{\alpha E^2(t, z) N(\varepsilon, t, z)}{1 + A_1^2(\varepsilon - \varepsilon_0)^2}, \quad (2)$$

$$\frac{\partial E^2}{\partial z} + \frac{\partial E^2}{\partial t} = 2\pi\hbar\omega g_c \Theta_{e0}^{3/2} E^2 \int_0^\infty \frac{N(x, t, z) V \bar{x} dx}{1 + A^2 (x - x_0)^2} - 2\delta E^2, \qquad (3)$$

где E(t, z) — медленная амплитуда поля накачки; $f_1(\varepsilon, t, z)$ — функция распределения электронов в зоне проводимости; $f_2((m_e/m_h)\varepsilon, t, z)$ функция распределения дырок в валентной зоне; є — энергия, отсчитываемая от дна зоны проводимости для электронов и от потолка валентной зоны для дырок; $N(e, t, z) = f_1(e, t, z) + f_2((m_e/m_h)e, t, z) - 1$ уровней: $g_{c,v}(\varepsilon) = g_{c,v} \sqrt{\varepsilon}$ населенностей рабочих разность плотность электронных состояний в зоне проводимости и в валентной 30He; $g_{c,v} = (2m_{e,h})^{3/2}/(2\pi^2\hbar^3)$, $A_1 = (T_2/\hbar)(1+m_e/m_h)$, $A = \Theta_{e0}A_1$; Θ_{e0} начальная температура свободных носителей; me, mh — эффективные массы электрона в зоне проводимости и дырки в валентной зоне (для GaAs $m_e/m_h=0,14$); $x=\varepsilon/\Theta_{e0}$, $x_0=\varepsilon_0/\Theta_{e0}$; ε_0 — энергия фотовозбужденных электронов; $\alpha = |\mu_{c,v}|^2 T_2/\hbar^2$; $\mu_{c,v}$ — матричный элемент межзонно-го электродипольного перехода; 2δ — коэффициент линейных нерезонансных потерь в среде. Функционалы $S_R[f_1]$, $S_R[f_2]$ описывают межзонную рекомбинацию (с характерным временем T_{per}); $S_{eh}[f_1]$, $S_{he}[f_2]$ — взаимодействие свободных носителей при сохранении их числа (с характерным временем неупругих столкновений T_{ee} ; $S_{ef}[f_1]$, Shf [f2] — взаимодействие свободных носителей с фононами (с характерным временем T_{ef}).

Уравнения (1), (2) получены с использованием следующих приближений [6]: 1). распределение фононов с течением времени считается постоянным (температура решетки $\Theta_0 = \text{const}$); 2) не учитывается изменение энергетической структуры полупроводника под действием мощной накачки, что справедливо для полей с плотностью потока мощности $P < 10^{12}$ BT/см².

Начальное распределение электронов в зоне проводимости и дырок в валентной зоне является равновесным:

$$f_1^0(\varepsilon, 0, z) = \frac{n_0}{N_c(\Theta_{e0})} e^{-\frac{\varepsilon}{\Theta_{e0}}}, \quad f_2^0\left(\frac{m_e}{m_h}\varepsilon, 0, z\right) = \frac{p_0}{N_v(\Theta_{e0})} e^{-\frac{m_e}{m_h}\frac{\varepsilon}{\Theta_{e0}}}.$$
 (4)

Здесь $n_0 = p_0$ — начальные концентрации электронов в зоне проводимости и дырок в валентной зоне; $N_{c,v} = (\sqrt{\pi}/2) g_{c,v} \Theta_{e0}^{3/2}$ — эффективная плотность состояний в зоне проводимости и в валентной зоне при начальной температуре Θ_{e0} .

Граничное условие для поля накачки:

$$E(t, z=0) = E_0(t).$$
 (4a)

3. Релаксационные процессы в полупроводнике определяются различными по своей природе механизмами:

1) межзонной рекомбинацией свободных носителей с характерным временем $T_{\text{рек}}$ (для GaAs $T_{\text{рек}} \sim 10^8/n$ (c));

2) электрон-электронной релаксацией, вызванной столкновениями свободных носителей друг с другом, с характерным временем $T_{ee} \sim 10^3/n$ (c)*;

3) электрон-фононной релаксацией, обусловленной неупругим взаимодействием свободных носителей с фононами решетки. Характерное время этого процесса T_{ef} — минимальное из времен, которыми определяются при данных условиях процессы электрон-фононного взаимодействия: полярное оптическое рассеяние (с характерным временем $T_{LO} \sim 10^{-12}$ с), пьезоэлектрическое рассеяние (с характерным временем $T_p \sim 10^{-6} - 10^{-8}$ с), рассеяние на акустическом деформационном потенциале (с характерным временем $T_A \sim 10^{-8} - 10^{-10}$ с);

4) фазовой релаксацией с характерным временем $T_2 = \min\{\tau_y, T_{ee}, T_{ef}\}$, где τ_y — характерное время упругого электрон-фононного взаимодействия ($\tau_y \sim 10^{-14}$ с для GaAs).

Здесь рассмотрен случай некогерентного взаимодействия импульсной накачки с полупроводником в пренебрежении межзонной рекомбинацией и электрон-фононными взаимодействиями:

$$T_2 \ll \tau_{\rm H} \ll T_{ef}, T_{\rm DeK}$$

(5)

Предполагается, что вынужденные межзонные переходы происходят вблизи дна зоны проводимости, т. е. энергия фотовозбужденных электронов меньше энергии оптического фонона $\varepsilon_0 < \hbar \Omega_{LO}$ (для GaAs $\hbar \Omega_{LO} = = 37$ мэВ).

4. Исследуем процесс распространения импульса накачки в прямозонном невырожденном собственном полупроводнике в случаях быстрой ($\tau_{\rm H} \gg T_{ee}$) и медленной ($\tau_{\rm H} \ll T_{ee}$) электрон-электронной релаксации. Для решения вопроса о реализации этих предельных случаев необходимо рассмотреть уравнения для концентрации и энергии свободных носителей.

Из уравнений (1)—(3) с учетом (4)—(5) и выражений для концентрации электронов

$$n(t, z) = \int_{0}^{\infty} g_{c}(\varepsilon) f_{1}(\varepsilon, t, z) d\varepsilon$$

и суммарной энергии свободных носителей

$$\langle \varepsilon \rangle n(t, z) = \int_{0}^{\infty} \varepsilon [g_{\varepsilon}(\varepsilon) f_{1}(\varepsilon, t, z) + g_{\varepsilon}(\varepsilon) f_{2}(\varepsilon, t, z)] d\varepsilon$$

получим

$$\frac{\partial W}{\partial z} = -\frac{\hbar\omega}{2} (n - n_0) - \frac{2\delta}{c} W, \qquad (6)$$

$$\frac{\partial n}{\partial \xi} = -\frac{8\pi\alpha}{c} \kappa N(\varepsilon_0, \xi, z) \frac{\partial W}{\partial \xi},$$
 (7)

$$\frac{\partial N\left(\varepsilon_{0}, \xi, z\right)}{\partial \xi} = S_{eh}\left[f_{1}\right] + S_{he}\left[f_{2}\right] - \frac{4\pi\alpha}{c} N\left(\varepsilon_{0}, \xi, z\right) \frac{\partial W}{\partial \xi}, \qquad (8)$$

$$n(\langle \varepsilon \rangle - 2\varepsilon_0) = n_0 (3\Theta_{e0} - 2\varepsilon_0), \qquad (9)$$

* В силу близости эффективных масс носителей заряда при таких столкновениях происходит как обмен энергией, так и сбой фазы. где W (ξ , z) = $\frac{c}{4\pi} \int_{0}^{\xi} E^{2}(\xi', z) d\xi'$ — плотность потока энергии накачки, E = t - z/c — бегущее время $\kappa - \frac{\pi\hbar}{g_{c}(\varepsilon_{0})}$ Эти уравнения полу-

 $\xi = t - z/c$ — бегушее время, $\kappa = \frac{\pi \hbar}{2T_2} \frac{g_c(e_0)}{1 + m_e/m_h}$. Эти уравнения получены в приближении больших значений параметра A_1 .

• Медленная внутризонная релаксация осуществляется для импульсов, длительность которых удовлетворяет условию

$$T_2 \ll \tau_{\rm H} \ll T_{ee}, \ T_{ef}, \ T_{\rm pek}. \tag{10}$$

В этом случае время фазовой памяти $T_2 \ll T_{ee}$ и, следовательно, для электронов с энергией фотовозбуждения $\varepsilon_0 < \hbar \Omega_{LO}$ должно определяться временем упругого электрон-фононного взаимодействия $T_2 \sim \tau_y \sim$

 $\sim 10^{-14}$ с. Это накладывает ограничение на максимальную концентрацию свободных носителей: $n \ll 10^{17}$ см⁻³.

В этом приближении решение системы уравнений (6)—(9) имеет вид

$$N(\varepsilon_{0}, t, z) \simeq N_{0}(\varepsilon_{0}, 0, z) (1 - W(\xi, z) / W_{S^{M}}), \qquad (11)$$

$$n \simeq n_0 + 2\kappa |N_0| W(\xi, z) / W_{S^M},$$
 (12)

$$W(\xi, z) = W_0(\xi, 0) e^{-\gamma_M z}, \qquad (13)$$

где $N_0(\varepsilon_0, 0, z) = f_1(\varepsilon_0, 0, z) + f_2(\varepsilon_0, 0, z) - 1$ — начальная разность населенностей в точке фотовозбуждения ε_0 ;

$$W_{S}^{M} = \frac{c}{4\pi} \frac{1}{\alpha} \quad H \quad \gamma_{M} = \frac{\kappa |N_{0}|}{W_{S}^{M}} \hbar \omega + \frac{2\delta}{c}$$

— энергия насыщения и коэффициент поглощения в случае медленной межэлектронной релаксации.

Проведенные численные оценки (для начальной концентрации электронов $n_0 \sim 10^{13}$ см⁻³, параметра $\alpha \sim 10^{-50}$ СГСЭ, энергии фотовозбужденных электронов $\varepsilon_0 = 20$ мэВ) показали, что характерные для случая медленной электрон-электронной релаксации концентрации свободных носителей реализуются при энергиях накачки $W \ll W_S^{M} \sim$ $\sim 10^4$ эрг/см². Выражения (11)—(13) записаны для этого случая.

Концентрация свободных носителей (12) линейно растет при энергиях $W \ll W_S^{M}$. При этом в процессе распространения импульса наблюдается режим линейного поглощения, и форма сигнала не изменяется (13).

Случай медленной электрон-электронной релаксации (11) реализуется, например, для импульсов с $\tau_{\rm H} \sim 10^{-12}$ с и $W \sim 300$ эрг/см². Концентрация свободных носителей в этом случае $n_0 \sim 10^{13}$ см⁻³ < $n < 10^{14}$ см⁻³.

Быстрая электрон-электронная релаксация осуществляется для импульсов с длительностью

 $t_{eh}, T_2, T_{ee} \ll \tau_{\rm H} \ll T_{ef}, \qquad (14)$

где $t_{eh} \sim \frac{1}{E} \sqrt{\frac{(1+m_e/m_h)}{\mu_{cv}} \frac{\hbar \epsilon_0}{v_{ee}}}$ — время установления больцмановского распределения носителей с общей температурой [5]. Условия (14) позволяют считать, что в каждый момент времени благодаря быстрым электрон-электронным столкновениям устанавливается больц-

39

мановское распределение свободных носителей:

$$f_1(\varepsilon, \xi, z) = \frac{n(\xi, z)}{N_c(\Theta_e)} e^{-\frac{\varepsilon}{\Theta_e(\xi, z)}}, f_2\left(\frac{m_e}{m_h}\varepsilon, \xi, z\right) = \frac{n(\xi, z)}{N_v(\Theta_e)} e^{-\frac{m_e}{m_h}\frac{\varepsilon}{\Theta_e(\xi, z)}}$$

с изменяющимися со временем и расстоянием электронной температурой $\Theta_e(\xi, z) = (2/3) \langle \varepsilon \rangle$ и концентрацией свободных носителей $n(\xi, z)$. Разность населенностей рабочих уровней в точке ε_0 имеет вид

$$N(\varepsilon_0, \xi, z) = n(\xi, z) \left[\frac{e^{-\varepsilon_0/\Theta_e}}{N_e(\Theta_e)} + \frac{e^{-\frac{m_e}{m_h} \frac{\varepsilon_0}{\Theta_e}}}{N_v(\Theta_e)} \right] - 1$$

Уравнение для концентрации свободных носителей (7) в приближении ее больших значений $(n \gg n_0 | \Im \Theta_{e0} / (2\varepsilon_0) - 1 |$) имеет вид

$$\frac{\partial n}{\partial \xi} + \frac{2\alpha \kappa E^2(\xi, z)}{N_1\left(\frac{2}{3} \varepsilon_0\right)} n = -2\alpha \kappa E^2(\xi, z), \qquad (15)$$

где $\frac{1}{N_1\left(\frac{2}{3}\varepsilon_0\right)} = \frac{e^{-\frac{2}{2}}}{N_c\left(\frac{2}{3}\varepsilon_0\right)} + \frac{e^{-2m_h}}{N_v\left(\frac{2}{3}\varepsilon_0\right)}$ величина, зависящая от эф-

фективной плотности состояний в точке є.

Как следует из (15), концентрация электронов возрастает с увеличением энергии накачки по закону

$$n(\xi, z) = n_0 + \left(\frac{N_1\left(\frac{2}{3}\varepsilon_0\right)}{2} - n_0\right)\left(1 - e^{-\frac{W(\xi, z)}{W_S^0}}\right)$$
(16)

и достигает насыщения при *W*/*W*s⁶≫1:

$$n_{\text{Hac}} = \frac{1}{2} N_1 \left(\frac{2}{3} \varepsilon_0 \right). \tag{16a}$$

Здесь $W_{S}^{6} = \frac{c}{4\pi} \frac{N_{1} \left(\frac{2}{3} \varepsilon_{0}\right)}{2\alpha\kappa}$ — энергия насыщения полупроводника в случае быстрой электрон-электронной релаксации. Для GaAs при $\varepsilon_{0} = 20$ мэВ $W_{S}^{6} \sim 5 \cdot 10^{5}$ эрг/см².

Изменение плотности потока энергии накачки (6) с учетом (16) имеет вид

$$\frac{\partial W}{\partial z} = -\frac{\hbar\omega}{2} \left(\frac{N_1 \left(\frac{2}{3} \varepsilon_0 \right)}{2} - n_0 \right) \left(1 - e^{-W/W_S^6} \right) - \frac{2\delta}{c} W.$$
(17)

В процессе фотовозбуждения полупроводника наблюдается нелинейное поглощение импульса накачки. При $\delta = 0$ решение (17). имеет вид

$$E^{2}(\xi, z) = E_{0}^{2}(\xi) \left[(e^{\gamma_{0} z} - 1) e^{-W_{0}(\xi)/W_{S}^{0}} + 1 \right]^{-1}.$$
 (18)

где $\gamma_6 = \frac{\hbar\omega}{2W_S^6} \left(\frac{N_1 \left(\frac{2}{3} \epsilon_0 \right)}{2} - n_0 \right)$ — коэффициент поглощения в случае быстрой межэлектронной релаксации (при $\delta = 0$).

40

Численные оценки показали, что случай быстрой электрон-электронной релаксации (14) осуществляется при энергиях накачки $W \ge \ge 10^4$ эрг/см² для импульсов с длительностью $\tau_{\rm H} \sim 10^{-11} - 10^{-12}$ с. Время формирования t_{eh} больцмановского распределения носителей с общей электронно-дырочной температурой для импульсов с энергией $W \sim W_S^6 \sim 10^5$ эрг/см² и длительностью $\tau_{\rm H} \sim 10^{-11} - 10^{-12}$ с имеет порядок $10^{-13} - 10^{-14}$ с, а время установления фермиевского распределения [5] $t_F \sim 4 \cdot 10^{-10} - 4 \cdot 10^{-11}$ с, т. е. больше длительности $\tau_{\rm H}$ самого импульса накачки. Таким образом, при данном режиме фотовозбуждения наблюдается насыщение концентрации свободных носителей и в то же время полупроводник остается невырожденным.

5. Итак, при использовании импульсов накачки с энергией $W \ll 10^4$ эрг/см² и длительностью $\tau_{\rm H}$, удовлетворяющей (10), реализуется случай медленной электрон-электронной релаксации. Концентрация свободных носителей растет с увеличением энергии накачки, но не достигает насыщения. Максимальная концентрация свободных носителей при таком режиме фотовозбуждения $n \ll 10^{16} - 10^{17}$ см⁻³. Импульс накачки в случае медленной электрон-электронной релаксации поглощается без изменения формы.

При фотовозбуждении полупроводника импульсами с энергией 10^4 эрг/см² $\ll V < 5 \cdot 10^5$ эрг/см² и длительностью $\tau_{\rm H} \sim 10^{-11} - 10^{-12}$ с реализуется случай быстрой электрон-электронной релаксации, в системе свободных носителей устанавливается больцмановское распределение. Концентрация свободных носителей в этом случае достигает насыщения (16а). В процессе распространения импульс накачки испытывает нелинейное поглощение (18).

СПИСОК ЛИТЕРАТУРЫ

[1] Талицкий В. М., Гореславский С. П., Елесин В. Ф. ЖЭТФ, 1969, 59, с. 207. [2] Елесин В. Ф. ЖЭТФ, 1975, 69, с. 572. [3] Левинсон И. Б., Левинский Б. Н. ЖЭТФ, 1976, 71, с. 300. [4] Глазман Л. И. ЖЭТФ, 1981, 80, с. 349. [5] Глазман Л. И. ФТП, 1983, 17, с. 790. [6] Ильинова Т. М., Фортыгин А. А., Чердынцева Г. А. Изв. АН СССР, сер. физ., 1981, 45, с. 1485. [7] Полуэктов И. А., Попов Ю. М., Ройтберг В. С. Квант. электроника, 1974, 1, с. 1316. [8] Хохлов Р. В., Ильинова Т. М., Фортыгин А. А. ФТП, 1980, 14, с. 450. [9] Богданова М. В., Ильинова Т. М., Фортыгин А. А. Изв. АН СССР, сер. физ., 1979, 43, с. 1517.

> Поступила в редакцию 10.12.84

> > 41

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 3

УДК 535.37

ТУШЕНИЕ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ МОЛЕКУЛ ФЛУОРЕСЦЕИНОВЫХ КРАСИТЕЛЕЙ ВНЕШНИМИ ТЯЖЕЛЫМИ АТОМАМИ

Л. В. Левшин, Л. К. Соколова, Г. А. Кецле, В. В. Брюханов

(кафедра общей физики для физического факультета)

Эффекты усиления спин-орбитального возмущения в молекулах люминофоров под влиянием внешних тяжелых атомов (BTA) интенсивно изучаются со времени открытия этого явления [1]. В настоящее время методами оптического детектирования магнитного резонанса возбужденных триплетных состояний люминофоров показано [2, 3],