Таким образом, как видно из выраженьй (6), (11), (12), учет пленения приводит к заметному изменению этих величин. В частности, изменения для \varkappa'' могут достигать 10—20%, а величина γ_{ab} может меняться в 1,5—4 раза.

В заключение отметим, что рассмотренный относительно простой метод расчета позволяет получать явные выражения для поляризационных характеристик газового дазера не только для слабых, как, например, в [2], но и для произвольных полей. Кроме того, использование модели с усредненным оператором пленения в форме (2) открывает перспективы расчета флуктуационных характеристик газовых лазеров с учетом пленения излучения.

Авторы выражают благодарность проф. Ю. Л. Климонтовичу за постоянное внимание к работе и ценные замечания.

СПИСОК ЛИТЕРАТУРЫ

[1] Биберман Л. М., Воробьев В. С., Якубов И. Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982. [2] Дьяконов М. И., Перель В. И. ЖЭТФ, 1964, 47, с. 1483. [3] Дьяконов М. И., Перель В. И. ЖЭТФ, 1970, 58, с. 1090. [4] Фрадкин Э. Е., Хаютин Л. М. Опт. и спектр., 1971, 30, с. 978. [5] Бирман А. Я., Савушкин А. Ф. Квант. электроника, 1978, 5, с. 502. [6] Бирман А. Я., Наумов П. Б., Савушкин А. Ф. Там же, 1980, 7, с. 338. [7] Климонтович Ю. Л. Кинетическая теория электромагнитных процессов. М.: Наука, 1980. [8] Волновые и флуктуационные процессы в лазерах. Под ред. Ю. Л. Климонтовича. М.: Наука, 1974. [9] Тучин В. В. Флуктуации в газовых лазерах: Ч. 2. Саратов: Издъю Саратовского ун-та, 1981, с. 39. [10] Бетеров И. М., Матюгин Ю. А., Чеботаев В. П. Опт. и спектр., 1970, 28, с. 357.

Поступила в редакцию 04.07.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 4

УДК 621.373.826

7*

ГЕНЕРАЦИЯ ВТОРОЙ ГАРМОНИКИ И СУММАРНОЙ ЧАСТОТЫ ПРИ ОТРАЖЕНИИ ОТ ПОВЕРХНОСТИ КРЕМНИЯ, ИМПЛАНТИРОВАННОЙ ИОНАМИ ФОСФОРА: ДИАГНОСТИКА РАЗУПОРЯДОЧЕНИЯ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ

М. Ф. Галяутдинов *, С. В. Говорков, Н. И. Коротеев, И. Б. Хайбуллин *, И. Л. Шумай

(кафедра общей физики и волновых процессов)

1. Нелинейно-оптические методы, в частности генерация второй гармоники (ГВГ) и суммарной частоты (ГСЧ) при отражении от поверхности нецентросимметричного полупроводника, являются эффективным средством получения структурной информации о кристаллической решетке [1, 2]. В то же время анизотропия нелинейного отклика центросимметричного кристалла приводит к зависимости интенсивности квадрупольной ГВГ от ориентации кристалла по отношению к поляризации падающего излучения [3]. Отсюда следует возможность применения ГВГ и ГСЧ для диагностики состояния кристаллической решетки центросимметричных кристаллов, каким является, в частности, кремний.

ГВГ от поверхности кремния была с успехом использована для исследования динамики лазерного отжига [4].

В настоящем сообщении приводятся результаты исследования методами ГВГ и ГСЧ поверхности (111) кремния, подвергнутой частичной аморфизации путем имплантации в нее ионов фосфора Р⁺⁺ с энергией 80 кэВ. Постепенное разупорядочечяе кристаллической структуры, происходящее по мере увеличения дозы имплантации, приводит к изменениям в ориентационных зависимостях ВГ и СЧ, что позволяет судить о степени разупорядоченности поверхности с высоким пространственным разрешением.

2. Геометрия эксперимента аналогична представленной в работе [1]. Излучение лазера на $AV\Gamma$: Nd³⁺ с принудительной синхронизацией мод, работающего в режиме повторения цугов импульсов $\tau_{\rm пуга}$ = 150 нс, $E_{\rm пуга}$ = 1 мДж) с частотой 1 кГц,

* Казанский физико-технический институт.

99

Рис. 1. Зависимости интенсивности ВГ от угла поворота кристалла ψ вокруг нормали к поверхности при различных дозах имплантации *D*: a - D = 0 (чистый Si), A/B = 15; $\delta - D = 3,6\cdot10^{13}$ ион/см², A/B = 4,6; $b - D = 12\cdot10^{13}$ ион/см², A/B = 2,3; $c - D = 24\cdot10^{13}$ ион/см², A/B = 0,48. Сплошная линия — эксперимент, пунктир — зависимости, вычисленные по (1)

фокусировалось на поверхность образца кремния среза (111). Зондирующее излучение было поляризовано параллельно плоскости падения на кристалл. Из отраженного излучения набором фильтров и монохроматором выделялось излучение ВГ (СЧ), которое регистрировалось ФЭУ-106. Анализатор выделял компоненту излучения, поляризованную параллельно плоскости падения. Поворот кристалла вокруг нормали к поверхности осуществлялся шаговым двигателем. Система регистрации представляла собой строб-интегратор с выходом на самописец. В экспериментах по ГСЧ использовался удвоитель частоты (кристалл LiIO₃) с эффективностью $\simeq 20\%$. Генерируемое с его помощью излучение второй гармоники ($\lambda = 0.53$ мкм) было поляризовано перпендикулярно плоскости падения на исследуемый кристалл.

вано перпендикулярно плоскости падения на исследуемый кристалл. 3. Зависимость интенсивности ВГ от угла поворота кристалла вокруг нормали к поверхности ф в данной геометрии есть результат интерференции изотропного и анизотропного вкладов [2]:

$$I_{\rm B\Gamma} \sim |A\cos 3\psi + B|^2, \tag{1}$$

где $A = \chi_{1111}^{(2)Q} - (\chi_{1122}^{(2)Q} + \chi_{1212}^{(2)Q} + \chi_{1221}^{(2)Q})$ — параметр анизотропии, $B = aA + b\chi_{1212}^{(2)Q} + c\chi_S$, a, b, c — функции угла падения, $\chi_{ijkl}^{(2)Q}$ — компоненты тензора квадрупольной нелинейности 2-го порядка, χ_S — линейная комбинация компонент тензора поверхностной дипольной нелинейности 2-го порядка. Характер зависимости $I_{B\Gamma}$ (ψ) опре-

100

деляется соотношением констант A и B. В изотропной среде A=0. Естественно ожидать, что с ростом степени разупорядочения кристаллической решетки по мере возрастания дозы имплантации доля анизотропного вклада A в сигнале ВГ будет постепенно падать.

На рис. 1 представлены измеренные нами зависимости $I_{\rm B\Gamma}(\psi)$ при различных дозах имплантации. Характер этой зависимости для чистого Si (рис. 1, a) — шесть максимумов на интервале $\psi=0-360^\circ$ — говорит о том, что анизотропный вклад доминирует (|A| > |B|). При значениях дозы имплантации не более 1,8·10¹³ см⁻² заметных изменений зависимости $I_{\rm B\Gamma}(\psi)$ не происходит. При дальнейшем увеличении дозы (рис. 1, 6, в) наблюдаетс⁻⁹ перераспределение величин максимумов, что говорит

о росте изотропного вклада в сигнал ВГ. Наконец, при дозе имплатации 2,4 · 10¹⁴ см⁻¹² зависимость $I_{\rm B\Gamma}$ (ψ) имеет уже не шесть, а три максимума (рис. 1, *г*), т. е. $|A| \leq |B|$.

максимума (рис. 1, г), т. е. |А|≤|В|. Таким образом, с ростом дозы имплантации наблюдается постепенное увеличение доли изотропного вклада в сигнал ВГ при неизменной геометрии эксперимента, что свидетельствует о нарастании степени разупорядочения кристаллической решетки.

4. Весьма важным является вопрос о глубине зондирования [1]. Для излучения $\lambda = =0,53$ мкм она составляет в чистом Si величину $\sim \lambda/(4n) \simeq 30$ нм [5] (*n* — показатель преломления Si).

Для полного исключения возможных эффектов, связанных с относительно большой глубиной зондирования, нами проделаны аналогичные эксперименты по ГСЧ. Здесь глубина зондирования определяется коэффициентом

Рис. 2. Зависимости интенсивности СЧ от угла поворота кристалла ψ вокруг нормали к поверхности при различных дозах имплантации D: $a - D = 6 \cdot 10^{13}$ ион/см², $A'/B' = 5,6 \cdot 10^{-2}$, $6 - D = 12 \cdot 10^{13}$ ион/см², $A'/B' = 4,2 \cdot 10^{-2}$, $8 - D = 18 \cdot 10^{13}$ ион/см², $A'/B' = 0,9 \cdot 10^{-2}$, $2 - D = 24 \cdot 10^{13}$ ион/см², A'/B' = 0. Сплошная линияэксперимент, пунктир — зависимости, вычисленные по (1)

поглощения излучения СЧ и составляет ~10 нм. Зависимость I_{CU} (ψ) описывается формулой, аналогичной (1), с той лишь разницей, что в изотропной константе присутствует вклад также от 3-й гармоники основного излучения. На рис. 2 представлены измеренные зависимости I_{CU} (ψ) при различных дозах

На рис. 2 представлены измеренные зависимости $I_{CU}(\Psi)$ при различных дозах имплантации. При малых дозах имплантации (рис. 2, *a*, *б*) изотропный и анизотропный вклады сравнимы по величине. При увеличении дозы (рис. 2, *в*, *г*) относительная величина анизотропного вклада быстро падает, что выражается в исчезновении модуляции постоянного уровня с периодом $2\pi/3$.

5. Таким образом, наблюдаемые изменения в зависимостях $I_{BF}(\psi)$, $I_{C\Psi}(\psi)$, происходящие по мере увеличения дозы имплантации, свидетельствуют о постепенном нарастании степени разупорядоченности кристаллической решетки и могут служить количественными характеристиками аморфизации поверхности. Важно отметить, что сохранение симметрии 3-го порядка зависимостей $I(\psi)$ по мере роста дозы имплантации подтверждает тот факт, что кристаллическая решетка не меняет своей симметрии, а просто подвергается частичному разупорядочению из-за ионной имплантации. Авторы признательны С. А. Ахманову за помощь и обсуждение результатов.

СПИСОК ЛИТЕРАТУРЫ

[1] Ахманов С. А. и др. Письма в ЖТФ, 1984, 10, с. 1118. [2] Ахманов С. А., Емельянов В. И., Коротеев Н. И., Семиногов В. Н. УФН, 1985, 145, с. 675. [3] Тот Н. W. К., Неіпz Т. F., Shen Y. R. Phys. Rev. Lett., 1983, 51, p. 1983. [4] Shank C. V., Yen R., Hirlimann C. Phys. Rev. Lett., 1983, 51, p. 900., [5] Ducuing J., Flytzanis C. In: Optical properties of Solids. Ed. F. Abeles, Amsterdam: North Holland Publ. Co., 1972, ch. 11, p. 920.

Поступила в редакцию 11.07.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1986, Т. 27, № 4

УДК 541.14:535.217

ИМПУЛЬСНОЕ ОПТИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПРИЭЛЕКТРОДНЫЕ Процессы

П. В. Козлов, Е. К. Козлова, А. И. Портнягин

(кафедра общей физики и волновых процессов)

Электродные процессы происходят в пределах приповерхностного слоя на границе раздела электрод — электролит. Обычно исследуют поведение электрохимической ячейки при изменении подаваемого на нее электрического напряжения [1, 2]. В то же время ряд работ посвящен смещению электрического равновесия при оптическом нагреве [3, 4]. При этом общей тенденцией исследований является стремление не нарушить химическое равновесие на границе раздела. Поэтому, как правило, работают с химически индифферентными системами, а температуру повышают лишь на несколько градусов. Причем лишь немногочисленные работы затрагивают вопрос о собственных временах формирования двойного электрического слоя [3, 4].

Целью данной работы является изучение особенностей поведения электродного потенциала при одновременном смещении термического, химического и электрического равновесия на границе раздела металл — электролит в условиях импульсного оптического воздействия.

Характерный вид скачка разности потенциалов между двумя электродами при воздействии оптического импульса на один из них приведен на рис. 1. Примечатель-

но, что времена нарастания сигнала τ_1 и его спада τ_2 намного превышали длительность лазерного импульса τ_{π} . Так, при $\tau_{\pi}=20$ нс $\tau_1=0,2--1$ мс, а τ_2 достигало нескольких минут. Зависимость, описывающая нарастание сигнала, имеет вид $1 - e^{-\alpha t}$. Релаксация электроиного потенциала в первые секунды подчиняется экспоненциальному закону $e^{-\beta t}$, а затем диффузионному $1/\sqrt{t}$. Коэффициенты α , β зависисят от концентрации раствора C_p энергии оптического импульса E и соотношения диаметра луча d_{π} и размеров пластины d_0 .

Наблюдалась сильная зависимость τ_1 и τ_2 от концентрации раствора: $\tau_{1,2} \sim e^{-kc}$, k=0,25 л/г. Времена τ_1 и τ_2 зависели от значения сопротивления R, подключаемого параллельно к электродам. Но сопротивления меньше 15 кОм при C==80 г/л уже не оказывали практически никакого влияния на τ_1 .

Амплитуда сигнала достигала 0,6 В, а возникающий на облучаемом электроде заряд составлял около 10⁻⁶ Кл. При увеличении энергин лазерного импульса и неизменных остальных параметрах системы величина разности потенциалов между электродами выходила на насыщение. Эффекты насыщения наблюдались и при увеличении концентрации раствора (рис. 2). Причем то значение концентрации раствора, при котором сигнал выходил на насыщение, зависело от энергии оптического импульса.

102