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The types of solutions which form in a one-dimensional nonlinear prob-
lem about interaction between electrons and acoustiecal phonons are 1n-
vestigated. Conditions at which the multitude of sclutions is found
to be fractal are indicated.

1. PROBLEM AND INTRODUCTION FORMULATION

There have been many hypotheses about the posslible fractal nature of wave
functions near the boundaries of a forbidden zone (see for instance [1~3]). These
ideas seem quite attractlve. It would be nice, however, to find a comparitively
simple example in which the nature of the instabllity responsible for the for-
mation of the fractal strucdture of the corresponding multitude would be clearly
visible. For this purpose, this work examines a one-dimenslonal model of a sys-
tem of electrons which interact with acoustical phonons. Within the method of
effective mass the Schroedinger equatlon and the equation whilch describes the be-~
havicr of the phonons have the form (compare [4]; the authors assume A=2m=l)

¢" + a%g — a'Bg{p|2=0. (2)

- Here, q 1s the one-dimensional vector of lattice shifting, the prime
indicates the value of x which 1s a derlvative in terms of the coordinate, a =

= /s, where w and s are the frequency and phase velocity of the acoustical pho-
nons, o and B are the constants of the bond (¢ > 0 and B > 0), and the wave func~
tion Y(x) is assumed to be substantive {in this particular case this 1s Justl-

fied). The energy of the electrons E is read off from the bottom of the conduc-
tivity zone in the 1deal lattice.

It 1s noted that 1n essence an adiabatic approximation (phonons and a slow
subsystem) was used in deducing these equations. For this reason the value of a
is assumed to be less than the other parameters of the corresponding dimension.

Equations (1) and (2) are a nonlinear dynamic system. Assuming

Y=g, ¢'=p, (3}

this system 1is reduced to the standard appearanée
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V=g,
q'=p,
¢ =—(E+ap)p,
p'meg? (g - g},
Generally speaking, numerical integration is required for investigating the in-
tegral trajectories of system (4). For the purpose of this work, however, it is

sufficient to determine the special points and tec investigate the behavicr of
the integral curves in their small wvicinity.

(4)

2, SPECIAL POINTS AND THE SECULAR EQUATION

The special points of the system (4) are designated as ¢O’ wo, 9q> and Dye
Assuming, as usual, that

Y=Yo+ 8, 9=g0+ 39, p=po+ 8p, g=go+ 87, (5)
AX

where dy, é¢, 8q, and 8p are proportional to e, the following linearized system:
is found:

Abp — Sp=0, y i
A89+ apodp+ (E+ape)Sip=0,.
Mg—38p=0, (6)

2Mp+a*{1 — Bbe®) 89 +2a°Bgorpobp=0.

The determinant of this system 1s designated as D(A) and the secular equation,
from which the wvalues of A are ldentified, has the form of D{(A} = 0, Assuming
that the right parts of Egs. (3) are equal to zero, 1t is found that

£

o=Po=0, (7)
B0, (8)
(frda? — 1) qo=0.

(9)
At E # 0 Egqs. (7) and (8) allow for_only a trivial solution#®:
Yo=gom0, Ay 2% £i)E, Ay ic. (190)

At E = 0, however, the function ¥y remains arbitrary, while g, = 0. Here, the
roots of the secular equation have the appearance

Ma=0, Aae=al/ peE—1,
wherpre wo can take any value (%the line of specilal polints).
The presence of a zero root and a llne of special points hinders the inves-
tigation of solutilons of the examined system using the well-known methods [5].

For this reason it is expedlent to somewhat alter the system (1) and (2), adding
small nonlinear components to it (the latter need not have a strictly physical

¥The equallty of wo = 0 should not be confused; according to (5), the wave
function is not reduced to we alone.
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sense - upon completion of the calculations the cerresponding coefficients may
te squated to zZero).

3. THE MODIFIED SYSTEM OF EQUATIQNS

One of the components of interest suggestasitself -1t describes (fthe small!)
anharmonism of lattice oscillations. With its consideraticn Egq. {(2) assumes the
appearance

g’ =a*(pp*— 1) g + og?, (2"
where g 1s the constant of the anharmonism (o > 0). Analogously, a component
nonlinear in terms of ¢ must be introduced into the right part of Egq. (1). Its
simplest form, which confcrms with the condition of gradient invariance, is \wﬁew.
Thus, considering the function cof ¢ significant, as before, it is found that

v’ + (E + ap) v+ nd*=0, (1"

where n 1s the parameter, whose sign 1s subject to ildentificatlon (below it will
be evident that it must agree with the sign of E). It 1s stressed that unlike

the anharmonic component, the additional member in (1') has only a formally mathe-
matical sense and upon completion of the calculatlons the maximal transltion of

n » 0 should be met.

Instead of the linearized system (6), the following is now found:

: Ap — Op=0, _
" A0g+ (E -+ apy + 3mp & + w89 =0, (67)
Mg—38p=0, '

Mop—[a* (g —1) + 200,] 00 + 2'B0d Sp=0. -

The trivial speclal point here 1s not altered, just as the behavior of the
solutions 1n its vieinity is not altered. The nontrivial special point, how-
ever, 1s now determined by the relatilions

Po=po =0, Y= —E/M, gy=a? (PpE—1) . (11)

It 1s evident that the examined speciazal point exists enly when sign n = -sign E
and E approaches gero along with n, which the author willl hypothesize. Now the
case of E - 0 is of interest, where the relation |E/n] remains finite (factually

mg is determined from the normalization condition). The determinant of sgystem
(6') here assumes the appearance

- D(A)=2* + (09, —2£) A* + 2afq,a™pIh —2Eag,. (12)

At low values (but still not equal to zero) of E, g and n of the root D{A} are
given by the expressions

afa?

M-ﬂi—signﬁ,
; (13)

where
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R=[2a§a*u-1‘—‘:-l(ﬁ|il+1)] (14)
n
(for the sake of determinateness, it is assumed that |[E/n| > 1).

Aceording to [5], it follows that at E + +0 (when n < 0) near the special
nocint there is cne and only one periodlc trajectory, where it is of the saddls
type.® This means that permitted soluticns of the Schroedinger equation appear
whlch are described by homeecliniec integral curves. As 1s known (see, for in-
stance, [6]), their multitude has a fractal dimension. Generally speaking, se-
lecticn of the specific integral curve which corresponds to an energy of E = 0,
is determined by the boundary conditions on the 2nds of the large (formally - in-
finitely large) sample. It is known, however, that for homoclinic curves such a
procedure is physically senseless, slnce even the smallest variations in the
scundary conditions lead to quite large changes in the solution. In fact, the
case of '"spatial ncise" must occur here, i.e., powerful and disordered changes
in the wave function with z shift from polint to point.

It is clear that the examined solutions correspond tc less than complete en-
ergy since they are assoclated with the trivial special peoint. Because of this,
it is precisely they which must be physically reallzed.

Apparently analcogous results are also acquired with interaction between
gelectrons and optical lattice osclllations, However, consideratlon of interac-
tion with acoustical oscillations, despite its relative weakness, seems attrac-
tive due to itz universal nature.

The author 1is very indebted to Yu. I. Kuznetsov for his useful remarks.
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#Tt should be noted that demonstration of Shil'nikov's theorem[5] 1s based
on a hypothesis about the existence of a loop In the separatrix wilth a specific
value of a certaln parameter. For thls hypothesis to be confirmed, it is suffi-
cient to have (in the problem here) four free parameters, whose adjustment en-
sures "linking" of the two separatrices, one of which belongs to a stable sepa-
ratrix surface, while the other belongs te an unstable separatrix surface. As
is evident from Egs. (1') and (2'), such parameters are present in the problem.
Naturally, the situatlon with the loop of the separatrilix is not approximate.
With a change 1n the parameters, this loop 1s broken down, engendering approxi-
mate objects - stable or saddle maximal cycles., In the problem here, the latter
possinility 1s reallzed.
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