[5] Ржанов А. В. Электронные процессы на поверхности полупроводников. М., 1971. [6] Кашкаров П. К., Козлов С. Н. // Микроэлектроника. 1976. 5, № 6. С. 535— 539. [7] Мосс Т., Баррел Г., Эллис Б. Полупроводниковая оптоэлектроника. М., 1976. [8] Кашкаров П. К., Образцов А. Н., Сорокин И. Н., Сосновских Ю. Н. // Микроэлектроника. 1985. 14, № 5. С. 55—59. [9] Киселев В. Ф., Крылов О. В. Электронные явления в адсорбиии и катализе на волупроводниках и диэлектриках. М., 1979. [10] Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М., 1974. [11] Кізеlev V. F., Matveev V. A., Prudnikov R. V. // Phys. Stat. Sol. (a). 1978. 50. Р. 739. [12] Paques-Ledent M. Th., Tarte P. // Spectrochim. Acta. 1969. A25. P. 1115—1125. [13] Watanabe K., Hashiba M., Hirohata Y. et al. // Thin. Solid Films. 1978. 56. P. 63—73.

Поступила в редакцию 27.06.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1986. Т. 27, № 5

УДК 621.315.592

ЯРОЦЕССЫ ПЕРЕНОСА ЗАРЯДА В СТРУКТУРАХ Ge—GeO2 ПРИ воздействии нано- и пикосекундных световых импульсов

П. К. Кашкаров, А. В. Петров

(кафедра общей физики для химического факультета)

Фотоинжекционные процессы в системах диэлектрик—полупроводник достаточно подробно были изучены лишь для случая довольно малых интенсивностей оптического возбуждения ($P \sim 10^{-4} - 10^{-3}$ BT/см²) [1-3]. Вопрос о зависимости механизма фотоинжекции носителей заряда из полупроводника в диэлектрик от интенсивности облучения оставался открытым. Широкие возможности для исследования этой проблемы открывает применение лазеров, позволяющих получать световые импульсы с $P \sim 10^9$ BT/см² и более при пикосекундной длительности. В настоящей работе изучались зависимости оптического заряжения поверхности германия от экспозиции облучения и температуры в широких диапазонах интенсивностей ($P = 10^{-4} - 10^9$ BT/см²) и длительностей ($\tau = 3 \cdot 10^{-11} - 10^2$ с) освещения.

Исследовались монокристаллы германия *n*-типа ($\rho = 25 \, \text{Om} \cdot \text{cm}$), термически окисленные во влажном кислороде до толщины окисла 10-20 нм. Непрерывное облучение ($\tau = 1 - 10^2$ с, $P = 10^{-4}$ Вт/см²) осуществлялось с помощью осветителя, содержащего ксеноновую лампу сверхвысокого давления ДКСШ-1000 и монохроматор МДР-2. В наносекундном диапазоне использовалось излучение 2-й, 3-й и 4-й гармоник неодимового лазера (энергия квантов $hv_2=2,35$ эВ, $hv_3=3,5$ эВ, $hv_4==4,7$ эВ соответственно, $\tau_1=15\cdot10^{-9}$ с). Лазерное облучение (ЛО) пикосекундными импульсами (т₂=30·10⁻¹² с) осуществлялось с $hv_2 =$ =2,35 эВ. Изменение заряда в окисле ΔQ и плотность быстрых поверхностных состояний определялись методом эффекта поля на большом синусоидальном сигнале [4]. Измерения проводились в вакууме 10-4 Па при температурах T = 100-300 К. Все образцы предварительно прогревались в вакууме при T = 470 K в течение 10^4 с, так как кратковременные (10³ с) прогревы структур Ge — GeO₂ использовались для разрядки ловушек диэлектрика [1].

Изучение особенностей фотозаряжения структур Ge — GeO₂ при лазерном облучении мы начали с определения мощности облучения, не вызывающего дефектообразования в окисном слое и на границе раздела окисел — германий. Для этого проводилось сравнение спектров оптического заряжения $\Delta Q(hv)$, измеренных с использованием маломощного осветителя до и после ЛО, по методике [1], а также фик-

сировалось изменение плотности быстрых поверхностных состояний. Оказалось, что ЛО при hv_2 с мощностью до 3-10⁶ Вт/см² и 10⁹ Вт/см² для τ_1 и τ_2 соответственно не вносит заметных изменений в системы ловушек окисла и быстрых поверхностных состояний. Поэтому в дальнейшем использовались лазерные импульсы с мощностью, не превышающей указанные значения.

Как было показано ранее [1, 2], отрицательное оптическое заряжение в системе Ge—GeO₂ может происходить при участии как делокализованных состояний окисла (hv > 2,8 эВ, переход 1 на рис. 1), так и локализованных флуктуационных состояний в GeO₂ (hv < 2,8 эВ, переход 2 на рис. 1). При энергии квантов $hv_2=2,35$ эВ (вторая гармоника) реализуется последний тип переходов. На рис. 2 представлены зависи-

Рис. 1. Схема возможных переходов фотовозбужденных электронов (1, 2) и дырок (3) из полупроводника на ловущки окисла при освещении структуры Ge—GeO₂

Рис. 2. Зависимость оптического заряжения от экспозиции (hv_2) при лазерном облучении импульсами: τ_2 , $P=10^9$ BT/см² (1), τ_1 , $P=1,6\cdot10^6$ BT/см² (2) и непрерывном освещении с $P=10^{-4}$ BT/см² (3)

мости заряда в окисле от экспозиции облучения P_{τ} при $P=10^9$ (1); 1,6·10⁶ (2) и 10⁻⁴ Вт/см² (3). Несмотря на значительную (примерно на тринадцать порядков) разницу в интенсивностях световых потоков, величины заряжения, соответствующие определенной экспозиции p_{τ} , были в этих случаях примерно одинаковы.

Кинетические кривые релаксации отрицательного заряда после выключения освещения хорошо спрямлялись в координатах $\ln |\Delta Q| - t^{0.3}$. Эффективные времена релаксации [5], полученные для случаев ЛО и маломощного освещения ($P = 10^{-4}$ BT/см²) при равных экспозициях, были близки.

Этот результат, а также данные, приведенные на рис. 2, свидетельствуют о том, что при изменении мощности облучения на hv_2 в пределах 13 порядков величины переход фотовозбужденных электронов из полупроводника в диэлектрик происходит при участии одних и тех же флуктуационных уровней в GeO₂ с последующей локализацией на одни и те же глубокие ловушки.

Перейдем к рассмотрению особенностей фотозаряжения при ЛО

структур Ge — GeO₂ излучением 3-й гармоники ($hv_3=3,5$ эB, $\tau_1=15$ нс, $P=0,13\cdot 10^6$ BT/см²). Эксперименты показали, что при одинаковых экспозициях ЛО с hv_3 обусловливает примерно такое же по величине отрицательное заряжение, как и маломощное освещение при той же энергии квантов (рис. 3). Увеличение энергии квантов от hv_2 до hv_3 при-

Рис. 3. Зависимость оптического заряжения от экспозиции при лазерном облучении с τ_2 , $P=0,13\cdot10^6$ Вт/см² (1, 3) и непрерывном освещении с $P=10^{-4}$ Вт/см² (2, 4). Энергии квантов hv_3 (1, 2) и hv_4 (3, 4)

Рис. 4. Температурные зависимости оптического заряжения: в результате облучения с hv_2 (1, 2) четырьмя импульсами лазера с $\tau_1=15$ нс, P== 1,6·10⁶ Вт/см² (1) и маломощного освещения с P== 10⁻⁴ Вт/см² (2) до одинаковых экспозиций; в результате облучения с hv_3 (3, 4) и hv_4 (5, 6) импульсом лазера с $\tau_1=15$ нс, $P=0,13 \times$ $\times 10^6$ Вт/см² (3, 5) и маломощного освещения с P== 10⁻⁴ Вт/см² (4, 6) до одинаковых экспозиций

водит к существенному ускорению кинетики отрицательного оптического заряжения. При малых экспозициях $P\tau < 10^{-2} \ \text{Дж/см}^2$ эффективности фотозаряжения $\Delta Q/(P\tau)$ различаются для hv_3 и hv_2 на два порядка. Это обстоятельство полностью согласуется с развитой ранее моделью оптического заряжения систем диэлектрик—полупроводник [1, 2]: переход фотовозбужденных электронов из германия в окисел при $hv_3 =$ =3,5 эВ происходит при участии делокализованных состояний в GeO₂ (см. рис. 1, переход 1).

ЛО германиевых структур излучением 4-й гармоники ($hv_4=4,7$ эВ, $\tau_1=15$ нс, $P=0,13\cdot10^6$ Вт/см²) приводило к положительному заряжению поверхности. Этот эффект связан с переходом горячих дырок из полупроводника в окисел с последующим захватом на глубоких ловушках (см. рис. 1, переход 3) [1, 2]. Как видно из рис. 3, величина заряжения при освещении с hv_4 , так же как это наблюдалось на hv_2 и hv_3 , определялась в наших экспериментах экспозицией $P_{\rm T}$, а не интенсивностью светового потока.

Рассмотрим данные по температурной зависимости фотозаряжения структуры Ge — GeO₂ при импульсном ЛО. При hv < 2,8 эВ фотовозбужденные в Ge электроны переходят в GeO₂ по локализованным состояниям, реализуется прыжковый тип проводимости [6]. Действительно, величина оптического заряжения при ЛО с $hv_2=2,35$ эВ ($\tau_1=15$ нс, $P=1,6\cdot10^6$ BT/см²) быстро убывает с понижением температуры (см. кривую 1 на рис. 4). Кривая 2 на рис. 4 отражает температурную зависимость оптического заряжения при освещении с hv_2 от маломощного источника ($P=10^{-4}$ BT/см²) при той же величине экспозиции, что и при ЛО. Легко видеть, что в случае импульсного освещения заметное фотозаряжение наблюдается до более низких температур, чем при непрерывном освещении. Кривая 1 может быть получена из кри-

вой 2 путем сдвига по оси температур примерно на 30 К. Поскольку переход горячих носителей заряда из полупроводника в окисел происходит непосредственно за время действия импульса лазерного излучения (время термализации горячих носителей ~ 10⁻¹² с [7]), естественно предположить, что указанный выше сдвиг связан с разогревом слоя окисла, в пределах которого перемещаются фотоинжектированные из полупроводника электроны. Ранее [1] было показано, что глубина локализации захваченного в GeO2 заряда не превышает 10 нм от границы раздела германий-окисел. Следовательно, найденная температура относится именно к этой области окисла. Нагрев приповерхностного слоя кристалла при ЛО происходит главным образом за счет термализации возбужденных в полупроводнике носителей заряда в пределах длины поглощения света (~ 20 нм для hv_2) [8]. Маловероятно, чтобы температура отличалась значительно на расстояниях 10-20 нм, и полученную оценку нагрева при ЛО можно распространить также на слой полупроводника ~20 нм.

На рис. 4 представлены также температурные зависимости фотозаряжения под действием одного импульса лазерного излучения с энергией квантов hv_3 (кривая 3) и hv_4 (5). Так же, как и при непрерывном освещении до тех же величин экспозиции на hv_3 (4) и hv_4 (6) эффективность фотозаряжения (отрицательного и положительного соответственно) на hv_3 увеличивалась с понижением T, а на hv_4 почти не зависела от T.

При освещении структур Ge — GeO₂ квантами света с hv_3 и hv_4 переходы носителей заряда в окисел происходят в основном по системам делокализованных состояний (см. рис. 1); этот процесс слабо зависит от температуры. Температурные зависимости оптического заряжения в этом случае главным образом определяются темпами обратного выброса электронов и дырок с соответствующих ловушек окисла в полупроводник. Время стекания заряда с электронных ловушек окисла в полупроводник. Время стекания заряда с электронных ловушек окисла ~10³ с, поэтому с понижением температуры, по мере уменьшения вероятности обратного выброса, величина отрицательного фотозаряжения на hv_3 при фиксированной экспозиции возрастает (см. рис. 4, кривые 3 и 4). С дырочных ловушек обратный выброс захваченных носителей при комнатной температуре практически не происходит (время стекания положительного заряда с ловушек в GeO₂ превосходит 10⁶ с), соответственно, с понижением температуры эффективность фотозаряжения на hv_4 почти не изменяется (см. рис. 4, кривые 5 и 6).

Итак, в работе показано, что величина фотоинжектированного в окисел заряда определяется экспозицией $P\tau$ и не зависит от интенсивности света в диапазоне $P=10^{-4}-10^9$ Вт/см³. Анализ полученных данных позволил оценить температуру тонкого (~20 нм) поверхностного слоя образца непосредственно в момент лазерного импульса.

СПИСОК ЛИТЕРАТУРЫ

[1] Кашкаров П. К., Козлов С. Н. // Микроэлектроника. 1976. 5, № 5. С. 535-539. [2] Кашкаров П. К., Козлов С. Н., Петров А. В. // Изв. вузов. Сер. Физика. 1982. 25, № 5. С. 36-40. [3] Радпіа Н. // Z. Апдеw. Phys. 1979. 21. Р. 244-249. [4] Ржанов А. В. Электронные процессы на поверхности полупроводников. М.: Наука. 1971. [5] Козlov S. N., Кіselev V. F., Novototskii-Vlasov Yu. F. // Surf. Sci. 1971. 28, N 2. Р. 395-408. [6] Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М., 1974. [7] Кигз Н., Lompге L. А., Liu J. М. // J. de Physique. 1983. 44. Р. С5-23. [8] Уханов Ю. И. Оптические свойства полупроводников. М., 1977.

Поступила в редакцию 05.07.85