УДК 548.732

ВЛИЯНИЕ ЭФФЕКТОВ КОРРЕЛЯЦИИ НА СЕЧЕНИЯ КОГЕРЕНТНОГО КОМПТОН-ЭФФЕКТА

В. А. Бушуев, А. О. Айт

(кафедра физики твердого тела)

Комптоновское рассеяние (КР) рентгеновского и гамма-излучений широко используется для исследования распределения электронной плотности в кристаллах [1]. Информацию об электронной плотности получают также и из измерения интенсивностей структурных рефлексов, однако этот метод менее чувствителен к поведению валентных электронов, поскольку основной вклад в атомные факторы дают внутренние сферически-симметричные орбитали, тогда как в КР участвуют главным образом внешние (блоховские) электроны.

Экспериментально [2, 3] и теоретически [3, 4] показано, что информативность КР значительно повышается в условиях дифракции падающего на совершенный монокристалл излучения. При этом помимо диагональных элементов $\langle p | p \rangle$ электронной матрицы плотности (МП) можно изучать также и недиагональные элементы МП $\langle p | p + h \rangle$, где $| p \rangle$ — волновая функция электронов в импульсном пространстве, h векторы обратной решетки. Из результатов работ [1, 5] следует также, что недиагональные элементы МП определяют сечение КР и в том случае, когда условия дифракции выполняются для самих комптоновских квантов. Оба этих явления определены в [5, 2] как когерентный комптон-эффект.

Для постановки и интерпретации соответствующих экспериментов необходимо знать относительные вклады в общее сечение КР диагональных и недиагональных элементов МП. Цель настоящей работы заключается в теоретическом анализе соотношений между парциальными сечениями КР в зависимости от энергии комптоновских квантов, величины и ориентации вектора рассеяния по отношению к вектору обратной решетки **h**, от величины *h* и размера электронных оболочек.

Общее выражение для дифференциального сечения когерентного КР в направлении наблюдения k₀ можно представить в виде [1]

$$\sigma(\mathbf{k}_{0}, \omega) = r_{0}^{2}(\omega/\omega_{1}) \sum_{gg'} D_{gg'} V_{gg'} \sum_{l} e^{i(g'-g)\mathbf{r}_{l}} \sigma_{g'g}^{(l)}(\omega) \ (\mathbf{e}_{1}\mathbf{e}_{g}) \ (\mathbf{e}_{1}\mathbf{e}_{g'}), \tag{1}$$

$$\sigma_{g'g}^{(l)}(\omega) = \sum_{ij} f_{ij}^{(l)}(\mathbf{S}_g) f_{ij}^{(l)*}(\mathbf{S}_{g'}) \,\delta(\omega_{ji}^{(l)} - \Omega), \qquad (2)$$

$$f_{ij}(\mathbf{S}) = \langle \psi_i(\mathbf{r}) | \exp(i\mathbf{S}\mathbf{r}) | \psi_j(\mathbf{r}) \rangle,$$

где $\sigma_{g'g}$ — парциальные сечения КР, g, g'=0, h; k_g=k₀+g, S_g=S₀-g, S₀=k₁-k₀ — вектор рассеяния, ω_1 , k₁, e₁ и ω , k_g, e_g — частота, волновой вектор и поляризация падающего и рассеянного излучений соответственно, $\Omega = \omega_1 - \omega$, r_t — координаты атомов в элементарной ячейке, $r_0 = e^2/(mc^2)$. В дальнейшем будем считать, что все атомы в ячейке одинаковы. Динамические коэффициенты $D_{gg'}$ определяются структурой кристалла и отклонением k₀ от брэгговского направления. Выражения для $D_{gg'}$ и эффективных объемов КР $V_{gg'}$ приведены в [1], в настоящей работе их явный вид не существен. Соотношения (1), (2) справедливы и в случае дифракции внешнего излучения [3, 4], если считать, что \mathbf{k}_1 , \mathbf{e}_1 — волновой вектор и поляризация неупруго рассеянного излучения, а \mathbf{k}_g , \mathbf{e}_g — внешнего излучения.

Ограничимся рассмотрением КР, при котором совершаются переходы в непрерывный спектр, так что $\psi_i(\mathbf{r}) = V^{-i_2} \exp(i\mathbf{qr})$. Это допущение справедливо, если энергия электрона отдачи $\hbar^2 q^2/(2m)$ много больше энергии связи $\hbar\omega_i$ (импульсная аппроксимация [1]). Перейдем в (2) от суммирования по *j* к интегрированию по **q**, произведем замену $\mathbf{p} = -(\mathbf{q} + \mathbf{S}_{g'})$ и учтем, что в рамках импульсной аппроксимации $\Omega \gg \omega_i$, $\mathbf{S}_{g'} \gg \mathbf{p}$. Тогда

$$\sigma_{g'g}(\omega) = (2\pi)^3 \sum_{i} \int d^3 \mathbf{p} \langle \mathbf{p} | \mathbf{p} + \mathbf{g} - \mathbf{g}' \rangle_i \, \delta \left(\frac{\hbar S_{g'}^2}{2m} + \frac{\hbar \mathbf{p} \mathbf{S}_{g'}}{m} - \Omega \right), \quad (3)$$

$$\langle \mathbf{p} | \mathbf{p} + \mathbf{h} \rangle_i = \psi_i^*(\mathbf{p}) \psi_i(\mathbf{p} + \mathbf{h}),$$
 (4)

где $\psi_i(\mathbf{p})$ — волновая функция основного состояния электрона в импульсном пространстве.

Величина σ_{00} представляет собой обычное (бездифракционное) сечение КР, отвечающее неупругому и некогерентному рассеянию кванта внешнего излучения $\hbar k_1$ в моду k_0 . Из аргумента δ -функции в (3) следует закон дисперсии в случае КР на слабосвязанных электронах:

$$\Omega = \Omega_0 + (\hbar p_z S_0/m), \quad \Omega_0 = \hbar S_0^2/(2m) = 2\omega_1 (\hbar \omega_1/(mc^2)) \sin^2 \vartheta, \qquad (5)$$

где Ω_0 — энергетический сдвиг максимума интенсивности в спектре КР, 2 ϑ — угол КР, т. е. угол между \mathbf{k}_0 и \mathbf{k}_1 . Второе слагаемое в (5) определяет доплеровское уширение линии КР. Поскольку из-за δ -функции в (3) трехмерное интегрирование заменяется интегрированием в плоскости, то спектр σ_{00} дает информацию о функции одномерного (в проекции на вектор рассеяния S₀) импульсного распределения ($\mathbf{p} | \mathbf{p}$), т. е. о диагональных элементах МП. Множитель D_{00} характеризует эффективность перекачки энергии из моды \mathbf{k}_0 в моду \mathbf{k}_0 + h. Слагаемое с σ_{hh} в (1) определяет обратный процесс — рассеяние из моды \mathbf{k}_0 + h в моду \mathbf{k}_0 . Сечение σ_{hh} является обычным сечением КР кванта $\hbar \mathbf{k}_1$ в направлении \mathbf{k}_h .

Члены в (1) с $g \neq g'$ описывают когерентные интерференционные эффекты в тех состояниях, в которые система «кристалл + излучение» может перейти при испускании кванта КР как в направлении \mathbf{k}_0 , так и в направлении \mathbf{k}_h . Таким образом, сечения σ_{0h} и σ_{h0} определяют вклад в общее сечение от рассеяния внешних квантов на электронном состоянии, представляющем собой совместную вероятность (корреляционную функцию $\langle \mathbf{p} | \mathbf{p} + \mathbf{h} \rangle$) нахождения электрона в состояниях $| \mathbf{p} \rangle$ и $| \mathbf{p} + \mathbf{h} \rangle$. Из (3), (4) следует также, что $\sigma_{h0} = \sigma^*_{0h}$.

К настоящему времени диагональные сечения σ_{00} измерены для большого числа элементов и химических соединений, расчеты σ_{00} выполнены достаточно полно с привлечением многочисленных методов теории энергетической зонной структуры [1]. Корреляционные же сечения σ_{0h} практически еще не исследовались. Важность их изучения определяется тем, что σ_{0h} является проекцией недиагональных элементов МП $\langle \mathbf{p} | \mathbf{p} + \mathbf{h} \rangle$ на вектор рассеяния. Отметим, что измерение структурных факторов такой информации не дает, так как $F(\mathbf{h}) = \int d^3\mathbf{p} \langle \mathbf{p} | \mathbf{p} + \mathbf{h} \rangle$ [6], где интегрирование проводится по всему импульсному пространству, а не в плоскости, как в (3).

Пусть ψ_i является s-состоянием: $\psi_i(\mathbf{r}) = (\pi a^3)^{-1/2} \exp(-r/a)$, где $a = a_0/Z_e$ — радиус оболочки, $a_0 = \hbar^2/(me^2) = 0.53$ Å, Z_e — эффективный

заряд, энергия связи $\hbar \omega_i = Z_e^2 e^2/(2a_0)$. Переходя в (3) к интегрированию в цилиндрических координатах в **р**-пространстве с осью $\mathbf{z} \| \mathbf{S}_0 \|$ для сечения σ_{00} в единицах $r_0^2(\omega/\omega_1)$, получаем

$$\sigma_{00}(\omega) = \frac{8}{3\pi} \frac{\Delta \Omega_C^5}{(\Delta \Omega^2 + \Delta \Omega_C^2)^3},$$
(6)

где $\Delta\Omega = \Omega - \Omega_0$ — энергетическая отстройка от центра линии КР, величина $\Delta\Omega_c = \hbar S_0/(ma)$ характеризует ширину спектра КР (полуширина функции (6) на полувысоте равна 0,51 $\Delta\Omega_c$). Выражение для σ_{hh} аналогично (6) и получается путем замены S_0 на $S_h = k_1 - (k_0 + h)$.

Корреляционное сечение σ_{0h} имеет более сложный вид. В случае, когда векторы S₀ и h параллельны (при этом излучение k₁ распространяется вблизи брэгговского направления), из (3) можно получить следующее аналитическое выражение для σ_{0h} :

$$\sigma_{0h} = \sigma_{00}\beta(y), \ \beta(y) = 3y^{-2} \left[1 + \frac{1}{1+y} - \frac{2}{y} \ln(1+y) \right], \tag{7}$$

где $y(x, ah) = ah(2x+ah)/(1+x^2)$, $x = \Delta\Omega/\Delta\Omega_C$ — отстройка от максимума спектра КР (6), выраженная в единицах ширины $\Delta\Omega_C$. Функция $\beta(y)$ характеризует отношение σ_{0h}/σ_{00} . В случае $ah \ll 1$ функция β стремится к единице, т. е. отличие σ_{0h} от σ_{00} тем меньше, чем меньше радиус орбиты основного состояния и порядок отражения. В другом предельном случае $ah \gg 1$, что отвечает КР на валентных электронах и электронах проводимости, $\beta \ll 1$, так что корреляционное сечение становится пренебрежимо малым.

На рис. 1 представлены рассчитанные по (6), (7) графики $\beta(y)$ и σ_{0h} в зависимости от безразмерной частотной отстройки x для ряда

значений параметра ah. Видно, что с увеличением ah отличие σ_{0h} от σ_{00} возрастает (рис. 1, a), а сам спектр σ_{0h} смещается к лилии упругого рассеяния (рис. 1, δ). При этом его амплитуда уменьшается, а ши-

сечений Рис. 1. Отношение сечения σ_{0h}/σ_{00} (a) И σg′g (б) в случае параллельных векторов So и h. Кривая 1 соответствует диагональному сечению σ₀₀, кривые 2-5- корреляционным сечениям ooh при значениях параметра ah, равных 0,05; 0,2; 0,5 и 1,0 соответственно

рина увеличивается. Для сравнения укажем некоторые типичные значения ah: в случае 1s-электронов алмаза значения ah равны 0,35; 0,58 и 0,89 для отражений 111, 220 и 331 соответственно, $a_{2s}h_{220}=3,8$, а для 1s-электронов Si $ah_{111}=0,09$, $ah_{400}=0,21$. Величины a определялись по данным энергий ионизации [7].

При произвольном угле φ между S₀ и h аналитическое выражение для σ_{0h} наиболее просто получить, аппроксимируя точную волновую функцию в p-пространстве соотношением $\psi(\mathbf{p}) = A \cdot \exp[-(\alpha p a)^2]$, где параметры A и α подбираются из соответствующих нормировок. Так, если потребовать равенства амплитуд и ширин точного и приближенного сечений σ_{00} соответственно, то $(A/\alpha)^2 = 2a^3/(3\pi)^5$, $\alpha = 1,155$. В результате из (3) для σ_{0h} получим

$$\sigma_{0h}(x) = \sigma_{00} \exp\left\{-\frac{1}{2} (\alpha a h)^2 \left[1 + \cos^2 \varphi + \frac{4x}{ah} \cos \varphi\right]\right\},\tag{8}$$

где

$$\sigma_{00}(x) = (8/(3\pi\Delta\Omega_c))\exp(-2\alpha^2 x^2).$$

При значениях угла $\varphi < 90^{\circ}$ корреляционный профиль смещен в область бо́льших энергий $\hbar \omega$, а при $\varphi > 90^{\circ}$ в область $\omega < \omega_1 - \Omega_0$. Максимальное значение $\sigma_{0h} \sim f_i(\mathbf{h}) = \exp[-(\alpha a h)^2/2]$ и ширина корреляционного профиля не зависят от φ и определяются только параметром ah (рис. 2, a). Эти же выводы подтверждаются численным интегрирова-

Рис. 2. Дифференциальные сечения КР на 1s-электронах алмаза в зависимости от угла между вектором рассеяния и вектором обратной решетки h (220): a—кривая 1—сечение σ_{00} , кривые 2—5—сечения σ_{0h} при значениях $\phi=30^\circ$, 60° , 90° и 150° соответственно; $6-\phi=52^\circ$, излучение Ag K_a ; сплошные кривые — результат численного интегрирования (3), штриховые расчет по приближенной формуле (8)

нием (3). На рис. 2, б приведены профили σ_{00} и σ_{0h} , соответствующие рассеянию излучения Ag K_{α} на K-электронах алмаза ($\hbar\omega_i = 284 \ \exists B$ [7]) в зависимости от энергии $\hbar\Omega$ при значении $\varphi = 52^{\circ}$ (k_0 лежит в плоскости векторов k_1 и h, $2\vartheta = 130^{\circ}$). Расхождение между кривыми, рассчитанными численно и по формуле (8) в области меньших передач энергии $\hbar\Omega$ объясняется нарушением в этой области условий применимости импульсной аппроксимации.

Самая интересная особенность спектра σ_{0h} заключается в том, что энергетический сдвиг его максимума $\Omega_{0h} = \Omega_0 - \Delta \Omega_C (ah/2) \cos \varphi$ отличается от известного комптоновского сдвига Ω_0 (5). Это объясняется тем, что в случае когерентного КР часть импульса отдачи, равная $\hbar h$, принимает на себя кристаллическая решетка как целое. Формально это выражается в том, что в законе сохранения энергии и импульса (δ-функция в (3)) импульс обратной решетки $\hbar h$ фигурирует равноправно с импульсом электрона **р**.

Рассмотрим интегральные по энергии сечения КР. Площади под спектрами (6) и (8) равны соответственно единице и $f_i(\mathbf{h})$. Однако если условия применимости импульсной аппроксимации $4\pi a \sin \vartheta/\lambda \gg 1$ не выполнены, то сечения σ_{00} и σ_{0h} для *i*-й оболочки следует нормировать на $1 - |f_{ii}(\mathbf{S}_0)|^2$ и $f_{ii}(\mathbf{h}) - f_{ii}(\mathbf{S}_0)f_{ii}(\mathbf{S}_0 + \mathbf{h})$ соответственно. При этом $\sigma_{00} = 0$ в области $0 \ll \Omega \ll \omega_i$.

Из соотношения (2) следует, что интегральные сечения КР имеют вид

$$N_{g'g}(\mathbf{S}_0) = \int \sigma_{g'g}(\omega) \, d\omega = f_{\tau} \left[f(\mathbf{g}' - \mathbf{g}) - \sum_{ij} f_{ij}(\mathbf{S}_0) f_{ij}^*(\mathbf{S}_0 + \mathbf{g} - \mathbf{g}') \right], \quad (9)$$

где $f_{T}(\mathbf{g}'-\mathbf{g})$ — температурный фактор Дебая-Валлера, $f(\mathbf{h}) = \sum f_{ii}(\mathbf{h})$ —

атомный фактор, $N_{g'g}(0) = 0$. Если направление наблюдения $\mathbf{k}_0 \perp \mathbf{h}$ в случае дифракции внешнего излучения (как в работе [3]), или внешний пучок $\mathbf{k}_1 \perp \mathbf{h}$ в случае дифракции квантов КР, то из (9) следует

$$N_{00} = N_{hh} = Z - \sum_{ij} |f_{ij}(\mathbf{S}_0)|^2, \ N_{0h} = f_{\tau} [f(\mathbf{h}) - Z + N_{00}].$$
(10)

Так как $f(\mathbf{h}) < Z$, то при достаточно малых векторах рассеяния S_0 корреляционное сечение N_{0h} (10) может стать отрицательным.

На рис. З приведены угловые зависимости интегральных сечений КР излучения Си K_{α} в германии. Значения факторов упругого рассеяния и обменных интегралов f_{ii} для

каждого электронного состояния взяты из [8]. работы Функции полезны для Ngʻg интерпретации по КР в условиях экспериментов дифракции внешнего излучения. При этом в (1) $D_{00} = 1$, $D_{hh} = |R|^2 v$,

Рис. 3. Угловая зависимость интегральных сечений КР $N_{g'g}$ (2 ϑ) в условиях дифракции излучения Си K_{α} в германии, отражение 220. $1 - N_{00}$, $2 - N_{hh}$, $3 - N_{0h}$, направление наблюдения k_0 лежит в Плоскости дифракции, $4 - N_{0h}$, $k_0 \perp h$

$$D_{0h} = D_{h0}^* = f_{c\tau} R \sqrt{\gamma}, \ V_{g'g} = (\mu_{\kappa p} + \mu_{int})^{-1},$$

R — амплитудный коэффициент отражения, γ — коэффициент асимметрии, *f*_{ст} — статический фактор Дебая—Валлера, μ_{кр} — коэффициент поглощения комптоновского излучения вдоль нормали к поверхности кристалла, μ_{int} — интерференционный коэффициент поглощения.

Следует отметить, что в случае малых векторов рассеяния использование сечений КР [8], рассчитанных в приближении Валлера—Хартри на основе волновых функций свободных атомов, не является корректным. Это объясняется искажением волновых функций валентных электронов в твердом теле. Кроме того, в области $S_g \leqslant k_c = \omega_p/v_F$, где ω_p — плазменная частота, v_F — скорость Ферми, неупругое рассеяние происходит главным образом с возбуждением коллективных колебаний плотности валентных электронов [1]. Для кремния и германия, например, критический волновой вектор возбуждения плазмонов $k_c \approx 1,2$ Å⁻¹ (sin $\vartheta_c/\lambda \approx 0,1$), сечение комбинационного рассеяния на плазмонах $N_{00} = 2\hbar S_0^2/(m\omega_p)$, что подтверждено экспериментально [9].

Таким образом, в работе проанализированы дифференциальные и интегральные сечения когерентного КР. В отличие от теплового диффузного рассеяния [10] их угловая зависимость определяется рассеянием на электронных оболочках с большим радиусом. Наиболее заметно нелокальность электронной плотности должна проявляться в асимметричном виде кривых выхода квантов КР при малых и промежуточных векторах рассеяния, а также в бормановской области углов падения при резко асимметричной геометрии дифракции.

65

СПИСОК ЛИТЕРАТУРЫ

[1] Бущуев В. А., Кузьмин Р. Н. //УФН. 1977. 122, № 1. С. 81—124.
[2] Golovchenko J. A. et al. // Phys. Rev. Lett. 1981. 46, N 22. Р. 1454—1457.
[3] Schülke W., Bonse U., Mourikis S. // Phys. Rev. Lett. 1981. 47, N 17.
[4] Schülke W./ Phys. Lett. 1981. A83, N 9. Р. 451—454. [5] Бушуев В. А., Кузьмин Р. Н. // ЖТФ. 1977. 44, № 12. С. 2568—2571. [6] Веnesch R., Sing S. R., Smith V. Н. // Сhem. Phys. Lett. 1971. 10, N 2. Р. 151—153.
[7] Блохин М. А., Швейцер И. Г. Рентеноспектральный справочник. М., 1982.
[8] Freeman A. J. // Асtа Cryst. 1959. 12, N 4. Р. 929—936. [9] Розенберг Ю. А., Карпенко В. Ф., Клещинский Л. И. // ФТТ. 1976. 18, № 7. С. 1841—1847.
[10] Аfanas'ev А. М., Аzizian S. L. // Асtа Cryst. 1981. А37, N 1. Р. 125—130.

Поступила в редакцию 04.07.85