ставляло соответственно 10 и 50. Шаг по времени был равен T/20, где $T = 2\pi/\omega_0$, $\omega_0 - 4$ астота наиболее эффективно усиливаемого сигнала, $\omega_0 = k_{\perp}c(\varepsilon - c^2/v_0^2)^{-1/2}$, k_{\perp} — поперечное волновое число.

На рис. 1 и 2 показаны нормированные динамические спектры сигнала на выходе прибора (разложение в интеграл Фурье по времени компоненты поля E_z на излучательном торце усилителя, накопленном за 4 T) при подаче на вход сигнала в виде строба и отрезка синусоиды соответственно. В обоих случаях спектр сначала почти сплошной, велик вес больших частот, что объясняется распространением в системе высокочастотного предвестника со скоростью, близкой к световой. Спектр имеет характерный пик на резонансной частоте, полуширина которого сначала уменьшается со временем, что согласуется с выводами стационарной теории. В дальнейшем происходит размывание спектра, совпадающее по времени со значительным уменьшением амплитуды поля, что связано с отсутствием на входе переменной составляющей.

Рис. З иллюстрирует процесс выхода усилителя на стационарный режим при подаче на вход его монохроматической волны.

Аналогичные результаты получаются и при моделировании пучка крупными частицами. Такой более общий подход позволяет также определить стартовый ток рассматриваемой системы с учетом нелинейных нестационарных процессов. Необходимо отметить, что применяемая методика не требует специального учета сил кулоновского взаимодействия частиц пучка, поскольку задача решается в наиболее общей постановке, тогда как для других подходов расчет этих сил — одна из наиболее трудоемких операций при численном моделировании. Теоретическое значение стартового тока для данной геометрии $I_{cr} = 1,36$ кА. Из численного эксперимента получилось $I'_{cr} = 1,5$ кА. Различие между этими величинами объясняется, по-видимому, нелинейной модуляцией электронного потока и действием сил пространственного заряда, ухудшающими синхронизм пучка с волной.

СПИСОК ЛИТЕРАТУРЫ

[1] Афонин А. М., Канавец В. И. // Радиотехн. и электроника. 1984. 29, № 4. С. 741—750. [2] Александров А. Ф., Галузо С. Ю., Канавец В. И. идр. // ЖТФ. 1980. 50, № 11. С. 2381—2389. [3] Майков А. Р., Свешников А. Г., Якунин С. А. // ЖВМ и МФ. 1984. 25, № 6. С. 883—895.

Поступила в редакцию 08.10.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1986. Т. 27, № 5

ОПТИКА И СПЕКТРОСКОПИЯ

УДК 621.378.325

НЕМАРКОВСКАЯ МОДЕЛЬ НЕЛИНЕЙНОЙ ВОСПРИИМЧИВОСТИ Растворов органических красителей

В. М. Петникова, С. А. Плешанов, В. В. Шувалов

(кафедра общей физики и волновых процессов)

Эффективным методом измерения субпикосекундных времен релаксации в конденсированных средах является метод бигармонической накачки [1, 2]. При воздействия на вещество трех полей с частотами ω_{1-3} , близкими к резонансной частоте электронного перехода $S_0 - S_1 \omega_{2i}$, и волновыми векторами \mathbf{k}_{1-3} генерируется четвертая волна частоты $\omega_4 = \omega_1 + \omega_2 - \omega_3$ в направлении $\mathbf{k}_4 = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$. Зависимость эффективности этого процесса от параметров волн накачки (поляризация, частотная расстройка, временная задержка импульсов) позволяет определить характерные скорости релаксационных процессов в среде. В работе [2] приведены результаты исследований субпикосекундных процессов релаксации в растворах органических красителей оксазин-18 и нильский синий в этаноле и этиленгликоле (рис. 1).

Цель настоящей работы состояла в интерпретации эксперимента [2] с учетом эффекта немарковости процесса колебательной релаксации [3].

Каждый процесс релаксации обусловлен взаимодействием выделенной подсистемы с термостатом и в простейшем случае характеризуется двумя величинами временем релаксации (T) и временем корреляции (τ_c) возмущений, вызывающих релаксацию [4]. Соотношение этих времен определяет марковский ($T \gg \tau_c$) нли немарковский ($T \ll \tau_c$) тип релаксации. В спектроскопии влияние немарковости релаксаций рассматривалось в применении к методу пробного пучка [5, 6]. Для сложной молекулы органического красителя характерна сильная связь между колебательно-вращательными модами — отсутствие строгих правил отбора. Это приводит к непосредственному возбуждению полем нелой совокупности мод. Экспериментальные исследования линейных спектров поглошения позволяют утверждать, что эта совокупность может рассматриваться как однородно уширенная линия [2]. Поэтому в основу модели нелинейной восприимчивости молекул красителя может быть положена четырехуровневая схема. Между уровнями 2—1 и 3—4 про-

исходит релаксационный излуча-тельный переход с временем T., обусловленный взаимодействием молекул с электромагнитным вакуумом — марковский процесс. Движение молекул и взаимодействие их с растворителем ($\tau_c \simeq 0.5$ пс) [3] приводят к нескольким релаксацяонным процессам. Это пространственная диффузия возбуждения (Т5), релаксация ориентации динольного момента μ ($T_{\theta}, \theta =$ $= \mu / |\mu|$), колебательная релак-2-3 и сация между уровнями 4—1 (*T*₃). Движение же является причиной неоднородного уширения линии (Тн) за счет изменения локального поля, сдвигающего

Зависимость энергии рассеянного излучения от расстройки центральных частот накачки для растворов нильский синий (а) и оксазии-18 (б) в этаноле: экспериментальные точки, сплошная лиция — $\gamma_3 \tau_c = 0.5$, пунктир — $\gamma_3 \tau_c = 0.1$

частоту перехода. Первые два процесса — марковские, так как $T_{5,0} \gg \tau_c$, а два последних — немарковские. Время попсречной релаксации T_2 в такой модели определяется шириной возбуждаемого полем колебательно-вращательного континуума, причем $T_2 \ll T_{1,3,5,0,H}$.

Кинетические уравнения для компонент матрицы плотности $\sigma_{1-4}(\sigma_i \equiv \sigma_{i1})$ и σ_{12} системы в представлении взаимодействия имеют вид

$$\frac{\partial \sigma_1}{\partial t} = \frac{2}{h} \operatorname{Im} V \sigma_{21} + \gamma_1 \sigma_2 + \frac{\gamma_3}{\tau_c} \int_0^\infty \Gamma(\tau) \sigma_4 (t - \tau) d\tau + L(\tau_1),$$

$$\frac{\partial \sigma_2}{\partial t} = -\frac{2}{h} \operatorname{Im} V \sigma_{21} - \gamma_1 \sigma_2 - \frac{\gamma_3}{\tau_c} \int_0^\infty \Gamma(\tau) \sigma_2 (t - \tau) d\tau + L(\sigma_2),$$

$$\frac{\partial \sigma_3}{\partial t} = -\gamma_1 \sigma_3 + \frac{\gamma_3}{\tau_c} \int_0^\infty \Gamma(\tau) \sigma_2 (t - \tau) d\tau + L(\sigma_3), \qquad (1)$$

$$\frac{\partial \sigma_4}{\partial t} = \gamma_1 \sigma_3 - \frac{\gamma_3}{\tau_c} \int_0^\infty \Gamma(\tau) \sigma_4 (t - \tau) d\tau + L(\sigma_4),$$

$$\frac{\partial \sigma_{21}}{\partial t} = \frac{i}{h} V(\sigma_2 - \sigma_1) - \gamma_2 \sigma_{21} - \frac{\gamma_1}{\tau_c} \int_0^\infty \Gamma(\tau) \sigma_{21} (t - \tau) d\tau.$$

Компонента поляризации оза пренебрежимо мала ввиду большой частотной отстройки действующих полей от частоты перехода 3->4. В системе (1)

$$\begin{split} \gamma_{\alpha} &= T_{\alpha}^{-1}, \ L\left(\sigma_{i}\right) = \gamma_{\theta} \left[\frac{1}{4\pi} \int d\theta \cdot \sigma_{i}\left(\theta\right) \to \sigma_{i}\left(\theta\right)\right] + D\nabla^{2}\sigma_{i}, \\ V &= -\frac{\mu}{2} \sum_{i=1}^{3} E\left(\omega_{i}\right) e^{-i(\omega_{i} - \omega_{21})t + i\mathbf{k}_{j}\mathbf{r}} - \end{split}$$

гамильтониан взаимодействия, D — коэффициент пространственной диффузии, $\Gamma(\tau)$ — элементы релаксационной матрицы. В приближении слабого взаимодействия, не возмушающего термостат-растворитель, вид $\Gamma(\tau)$ определяется корреляционной функцией гамильтониана взаимодействия молекулы красителя с термостатом, которая при расчетах полагалась равной $\Gamma(\tau) = \exp(-\tau/\tau_c)$. Использованная процедура усреднения кинетических уравнений справедлива в борновском приближении. В марковском пределе $\gamma_{\rm H}$ и γ_3 имеют смысл скоростей релаксации.

Решение системы (1) проводилось методом последовательных приближений для частотных и пространственных компонент матрицы плотности, существенных для определения поляризации $P(\omega_4)$.

Скорости введенных релаксационных процессов существенно различны:

$$\gamma_{1, 5, \theta} \ll \gamma_{3} \ll \gamma_{2}, \tag{2}$$

где $\gamma_5 = D | \varkappa_{1,2} - \varkappa_3 |^2, \varkappa$ — поперечная проекция волнового вектора. Поэтому с учетом (2) получим

$$P^{(\Psi_{\theta})} \sim \sum_{j=1,2} \frac{1}{(\gamma_{2} + \gamma_{H}\varphi_{4} - i\Delta\omega_{\delta})(\gamma_{1} + \gamma_{5} + \gamma_{3}\varphi_{j3} - i\Delta\omega_{j3})} \left[\frac{1}{\gamma_{2} + \gamma_{H}\varphi_{j} - i\Delta\omega_{j}} + \frac{1}{\gamma_{2} + \gamma_{H}\varphi_{3} + i\Delta\omega_{3}}\right] \left[2 + \frac{\gamma_{3}\varphi_{j3}}{\gamma_{1} + \gamma_{5} - i\Delta\omega_{j3}} \left(1 + \frac{\gamma_{1}}{\gamma_{5} + \gamma_{3}\varphi_{j3} - i\Delta\omega_{j3}}\right)\right], \quad (3)$$

где $\Delta \omega_k = \omega_k - \omega_{21}; \Delta \omega_{j3} = \omega_j - \omega_3; \varphi_{\alpha} = (1 - i \Delta \omega_{\alpha} \tau_c)^{-1}; \psi_0$ — угол, устраняющий зависимость рассеянного поля от процессов релаксации ориентации дипольного момента [2]. В (3) опущены несущественные множители, не зависящие от частот взаимодействующих волн.

Как и в [2], сравнение (3) с экспериментальными данными проводилось численными методами с учетом реальной ширины спектра накачки $\delta\omega = 1$ см⁻¹. Для исследованных этанольных растворов хорошее соответствие получено при $T_2 = (8\pm 2)$ фс и $T_2 = (11\pm 2)$ фс, $\gamma_{3}\tau_{c} = 0.5$, $\gamma_{n} = 0$ (оксазин-18 и нильский синий). Результаты расчета, приведенные на рисунке, подтверждают немарковский характер колебательной релаксации. Для сравнения там же показана теоретическая кривая в марковском пределе ($T_2 = 8$ фс; 11 фс; $\gamma_{3}\tau_{c} = 0$, 1). Она не отражает характерного перегиба экспериментальной зависимости $W(\Delta)$ в области расстроек центральных частот накачек $\Delta \sim 10$ см⁻¹. Непосредственное определение времена колебательной ширины спектральных экспериментах затруднительно из-за значительной ширины спектральных компонент накачки. Как и в двухуровневой модели [2], неоднородное уширения.

Таким образом, в работе, по-видимому, впервые показано существенное влияние немарковости процесса колебательной релаксации на результаты спектроскопии однофотонных переходов растворов органических красителей методом бигармонической накачки и их интерпретацию.

СПИСОК ЛИТЕРАТУРЫ

[1] Петникова В. М., Плешанов С. А., Шувалов В. В. // Опт. и спектр. 1984. 57. С. 965—967. ЖЭТФ. 1985. 88. С. 360—371. [2] Петникова В. М., Плешанов С. А., Шувалов В. В. // Опт. и спектр. 1985. 59. С. 288—292. [3] Теlla H. R., Lauberau A. // Сhem. Phys. Lett. 1983. 94. Р. 467—470. [4] Апанасевич П. А. Основы теории взаимодействия света с всществом. М., 1981. [5] Аіћага М. // Phys. Rev. 1982. B25. Р. 53—60. [6] Файнберг Б. Л. // Опт. и спектр. 1983. 55. С. 1098—1101.

Поступила в редакцию 27.01.86