нанса); при дальнейшем увеличении а кривая сглаживается и переходит в кривую, характеризующую один нерасщепленный резонанс.

Поскольку наблюдается сильная зависимость угловых распределений и поляризации фотоэлектронов от энергетического разрешения, то для правильной интерпретации соответствующих экспериментальных данных необходимо как можно точнее знать аппаратную функцию. Тем не менее из-за того, что ширины резонансных структур в энергетической зависимости параметров $\beta(E)$ и P(E) могут быть намного больше ширин узких резонансов фотопоглощения, измерения величин $\tilde{\Gamma}_{\lambda}$ и $\tilde{\Delta}_{\lambda}$, которые можно проводить даже с грубым разрешением, позволяют получать информацию о важных спектроскопических характеристиках AC.

В данной работе был рассмотрен простейший случай двух резонансов одной конфигурации с одинаковыми орбитальными моментами. Более сложная картина должна наблюдаться в случае трех и большего числа резонансов, не принадлежащих одному мультиплету и имеющих существенно разные ширины распада.

Авторы благодарят проф. В. В. Балашова за многочисленные полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Brehm B., Höfler K.//Phys. Lett., 1978. 68A. P. 437-440. [2] Heinzmann U., Heuer H., Kessler J.//Phys. Rev. Lett., 1975. 34, N 8, P. 441-444. [3] Heckenkamp Ch., Schäfers F., Schönhense G., Heinzmann U.//Phys. Rev. 1985. A32. P. 1252-1269. [4] Amusia M. Ya., Kheifets A. S.//Phys. Lett. 1982. 89, N 9. P. 437-439. [5] Черепков Н. А.//Опт. и спектр. 1980. 49, № 6. С. 1067-1075. [6] Kabachnik N. M., Sazhina I. P.//J. Phys. 1976. **B9**. P. 1681-1697. [7] Fano U.//Phys. Rev. 1961. 124. P. 1866-1878. [8] Connerade J. P., Carton W. R. S., Maniield M. W. D.//Astrophys. J. 1971. 165. P. 203-212. [9]: Wolff H. W., Radler K., Stonntag G., Haensel R.//Z. Phys. 1972. 257. P. 353-368. [10] Breuckmann E., Breuckmann B., Melhron W., Schmitz W.//J. Phys. 1977. **B10**. P. 3135-3150. [11] Theodosiou C. E.//Phys. Rev. 1977. A16, N 6. P. 2232-2247. [12] Petrini D.//J. Phys. 1981. **B14**. P. L617-L621.

Поступила в редакцию-04.12.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 1

УДК 539.172.3

НУКЛОННЫЕ ВЕТВИ И ПОЛУПРЯМОЙ МЕХАНИЗМ РАСПАДА ГИГАНТСКОГО РЕЗОНАНСА ЯДРА ²³Na

А. С. Габелко, К. М. Иргашев, Б. С. Ишханов, И. М. Капитонов, И. М. Пискарев

(НИИЯФ)

Целью работы является получение с помощью метода, подробно изложенного в работе [1], вероятности полупрямых распадов в отдельных парциальных фотонуклонных каналах для ядра ²³Na. Метод использует экспериментальные данные о парциальных фотонуклонных сечениях $\sigma(\gamma, p_i)$ и $\sigma(\gamma, n_i)$ (индекс *i* относится к определенному состоянию конечного ядра (A-1)), спектроскопических характеристиках заселяемых состояний из реакций однонуклонной передачи и выражения для ширины Γ^{\dagger} полупрямого распада, вытекающие из *R*-матричной теории. В данной работе используется вариант метода, применяемый для анализа проинтегрированных по энергии парциальных фотонуклонных сечений $\sigma^{int}(\gamma, \varkappa_i) = \int_{0}^{E_m} \sigma(\gamma, \varkappa_i) dE_{\gamma}$, где $\varkappa = p, n, E_m$ — максималь-

ная энергия фотона.

Имеющиеся экспериментальные данные о $\sigma^{int}(\gamma, p_i)$ и $\sigma^{int}(\gamma, n_i)$ для ядра ²³Na [2, 3] относятся к области дипольного гигантского резонанса (ДГР) и приведены в табл. 1, 2. ДГР ядра ²³ Na формируют

Таблица 1

	Характе	ристики уровне	йядра 22Ne	$\sigma^{\text{int}}(\boldsymbol{\gamma}, \boldsymbol{p}_{i})$			
Номер í	Энергия <i>Е_і</i> , МэВ	Спин, четность, изоспин Ј ^л , Т	Конфигу- рация дырки [nlj) ⁻¹	Спектро- скопичес- кий фактор S	Е _т = 32 МэВ [3]	Е _т = 29,5 МэВ [2]	$\sigma_{ph}^{\text{int}}(\mathbf{y}, \mathbf{p}_i)$
0	0	0+, 1	1d _{3/2}	0,12	—	0,32*	0,32
1	1,27	2+, 1	$1d_{5/2}$	1,73	$1,65 \pm 0,3$	1,87*	0,8—1,7
2	3,36	4+, 1	$1d_{5/2}$	0,62	$0,73{\pm}0,15$	1,72	0,15-0,3
3	4,46	2+, 1	$\left\{ \begin{array}{c} 2s_{1/2} \\ 1d_{5/2} \end{array} \right.$	$\left.\begin{array}{c}0,16\\0,34\end{array}\right\}$	0,56±0,15		$ \begin{cases} < 0, 4 \\ 0, 05 - 0, 1 \end{cases} $
4	5,15	2-, 1	,	2,6	0,75±0,3		0,8
5	5,34	1+, 1		1	$(0,08\pm0,03)$	2,45	0
6	5,37	2+, 1			$0,28{\pm}0,1$		0
8	5,64	3+, 1			$0,25 \pm 0,12$		0
10	6,12	2+, 1			$0,22{\pm}0,12$)	0

Интегральные сечения σ^{int} (γ , p_i) реакции ²³Na (γ , p_i) ²²Ne и их полупрямые компоненты σ^{int}_{nb} (γ , p_i) в МэВ·мб/ср

Звездочкой отмечены сечения, использованные в качестве опорных.

нуклонные переходы $1p \rightarrow 1d2s$ и $1d2s \rightarrow 1f2p$. Полупрямой нуклонный распад будет приводить к заселению таких состояний конечных ядер ²²Ne и ²²Na, которые являются дырочными относительно исходного ядра ²³Na. Дырочные конфигурации заселяемых при фоторасщеплении ²³Na состояний конечных ядер и величины соответствующих спектроскопических факторов S⁻ [4, 5, 6] приведены в табл. 1, 2.

ДГР несамосопряженного ядра $(N \neq Z)$ формируется из двух изоспиновых компонент с $T_{<}=T_0$ и $T_{>}=T_0+1$, где $T_0=(N-Z)/2$. Поэтому при анализе интегральных сечений его удобно представить в виде двух состояний — с $T_q=T_{<}$ и $T_{>}$, — вбирающих в себя всю вероятность E1-переходов. Энергии этих состояний $E_{<}$ и $E_{>}$ равны центрам тяжести соответствующих изоспиновых компонент. Тогда отношение полупрямых компонент интегральных фотонуклонных сечений заселения *i*-го и *k*-го состояний конечных ядер, обозначаемых $\sigma_{ph}^{int}(\gamma, \varkappa_i)$ и $\sigma_{ph}^{int}(\gamma, \varkappa_k)$, можно записать в следующем виде [1]:

$$\frac{\sigma_{ph}^{\text{int}}(\gamma, \varkappa_i)}{\sigma_{ph}^{\text{int}}(\gamma, \varkappa_k)} = \frac{\sigma_{<}\Gamma_{<}^{\dagger}(i) + a\sigma_{>}\Gamma_{>}^{\dagger}(i)}{\sigma_{<}\Gamma_{<}^{\dagger}(k) + a\sigma_{>}\Gamma_{>}^{\dagger}}, \qquad (1)$$

где $\sigma_{<}$, $\sigma_{>}$ — вероятности возбуждения $T_{<}$ - и $T_{>}$ -состояний, образующих ДГР, а $\Gamma^{\uparrow}_{<}(i,k)$ и $\Gamma^{\uparrow}_{>}(i,k)$ — ширины их полупрямого распада

на *i*-е и *k*-е состояния конечных ядер. Константа $a=\Gamma_{<}/\Gamma_{>}$, где $\Gamma_{<}$ и $\Gamma_{>}$ — полные (с учетом не только полупрямой, но и предравновесной и равновесной компонент нуклонного распада) ширины $T_{<}$ - и $T_{>}$ -состояний.

Правая часть соотношения (1) может быть рассчитана, и, следовательно, зная вероятность полупрямых процессов в одних парциальных фотонуклонных каналах, можно вычислить ее и для других. Вместо $\sigma_{<}$ и $\sigma_{>}$ в выражении (1) можно использовать вероятности воз-

Таблица 2

	Xapa					
i	<i>Е</i> _і , МэВ	J ^R , T	nlj > ⁻¹	s-	$\sigma^{\text{int}}(\gamma, n_i)$ [3]	$\sigma_{ph}^{\text{int}}(\mathbf{y}, n_i)$
0	0	3+, 0	1d _{5/2}	0,97		1,56
1.	0,58	. 1+, 0	$1d_{5/2}$	0,39	<u> </u>	0,42
2(0)	0,66	0+, 1	1d _{3/2}	0,12		0,4-0,6
3	0,89	. 4+, 0	$1d_{5/2}$	0,94	$0,76\pm0,2$	0,8
4	1,53	5+, 0		—	$0,07{\pm}0,02$	0
6(1)	1,95	2+, 1	$1d_{5/2}$	1,73	$0,76 \pm 0,12^*$	0,8
7	1,98	3+, 0	$1d_{5/2}$	0,58	$0,17{\pm}0,05$	0,17
8	2,21	1-, 0	$1p_{1/2}$	0,53	0,20 <u>±</u> 0,08*	0,23
9	2,57	2-, 0	$1p_{1/2}$	0,41	0,24 ± 0,06*	0,21
11	3,06	2+, 0	$1d_{5/2}$	0,07	0,14 <u>+</u> 0,07	0,004
14	3,94	1+, 0	$2s_{1/2}$	0,07	$0,09{\pm}0,02$	≼0,08
15(2)	4,07	4+, 1	$1d_{5/2}$	0,62	$0,11{\pm}0,04$	0,1
16	4,30	(0-), 0		<u>.</u>	0,18 <u>+</u> 0,08	0
17	4,32	1+, 0	—		$0,08 \pm 0,04$	0
18	4,36	2+, 0	$\left\{\begin{array}{c} 2s_{1/2} \\ 1d_{5/2} \end{array}\right.$	0,05 0,05 }	$0,08{\pm}0,02$	{≪0,01 0,001
20	4,52	7+(5+), 0			$0,09 \pm 0,03$	0
21	4,58	$2^{-}(0^{-}-3^{-}), 0$	$1p_{(1/2)}$	0,67	$0,14{\pm}0,06$	0,2
23	4,71	5+, 0			$0,08{\pm}0,03$	0
27(3)	5,17	(1,2)*, 1	$\left\{\begin{array}{c}2s_{1/2}\\1d_{5/2}\end{array}\right.$	$\left. \begin{array}{c} 0,16\\ 0,34 \end{array} \right\}$	0,48±0,15*	{≪0,5 0,02
	5,96	2-, 1	$1p_{1/2}$	2,6		0,1-0,3

Интегральные сечения $\sigma^{int}(\gamma, n_i)$ реакции ²³Na (γ, n_i) ²²Na [3] и их полупрямые [компоненты $\sigma^{int}_{ob}(\gamma, n_i)$ в МэВ мб/ср

Звездочкой отмечены сечения, использованные в качестве опорных; для уровней с T=1 в скобках в первой колонке указан номер соответствующего изобараналогового уровня ядра ²²Ne.

буждения $T_{<}$ и $T_{>}$ -компонент ДГР, которые для ²³Na в соответствии с предсказаниями работы [8] равны 0,35 и 0,65 (для ²³Na $T_{<}=^{1}/_{2}$, а $T_{>}=^{3}/_{2}$). Формулы для вычисления $\Gamma^{\uparrow}_{<}(i, k)$ и $\Gamma^{\uparrow}_{>}(i, k)$ приведены в работе [1]. Константа $a=\Gamma_{<}/\Gamma_{>}$ неизвестна и является параметром расчета. Ее выбирают так, чтобы обеспечить наилучшее воспроизведение экспериментальных данных.

Центры тяжести переходов $1p \rightarrow 1d2s$ и $1d2s \rightarrow 1f2p$ для ядра ²³Na, так же как и для других ядер, 1d2s-оболочки смещены относительно

Друг друга (т. е. имеет место так называемое конфигурационное расщепление ДГР [7]). Это расщепление для ²³Na составляет около 4 МэВ [7]. Заселение дырочных состояний в оболочке 1p происходит при распаде более высоко расположенной ветви ДГР, отвечающей переходам $1p \rightarrow 1d2s$. Дырочные состояния в 1d2s-оболочке заселяются при распаде лежащей на 4 МэВ ниже ветви ДГР, отвечающей переходам $1d2s \rightarrow 1f2p$. Каждая из вышеупомянутых ветвей в свою очередь расщепляется по изоспину (на компоненты с $T_q = 1/2$ и 3/2), причем величина изоспинового расщепления в данном случае, согласно работе [9], также около 4 МэВ. Учитывая данные о положении по энергии дипольных переходов из разных оболочек для 23 Na [2, 7], мы использовали в расчетах следующие значения $E_{<}$ и $E_{>}$: для ветви $1d2s \rightarrow 1f2p$ $E_{<}=17$ МэВ, $E_{>}=21$ МэВ; для ветви $1p \rightarrow 1d2s$ $E_{<}=21$ МэВ, $E_{>}=25$ МэВ.

Протонные и нейтронные заселенности внешних подоболочек $1d_{5/2}$, $2s_{1/2}$ и $1d_{3/2}$, а также полные числа нуклонов на этих подоболочках, необходимые для вычисления Γ^{\dagger} , были найдены из данных реакций однонуклонной передачи (см. табл. 1 и 2). При этом для изобараналоговых пар уровней в ²²Ne и ²²Na (уровней с T=1), имеющих энертии соответственно 0 и 0,66; 1,27 и 1,95; 3,36 и 4,07; 5,15 и 5,96 МэВ, спектроскопические факторы S⁻ полагались одинаковыми.

Величина отношения (1) зависит от того, с каким орбитальным моментом l вылетают полупрямые нуклоны. Так, полупрямые нуклоны, вылетающие из оболочки 1f2p (такому распаду предшествует нуклонный переход в ядре $1d2s \rightarrow 1f2p$), могут иметь l=1 или 3. В расчетах степень смешивания по l для таких переходов варьировалась независимо для состояний $T_{<}$ и $T_{>}$ с помощью двух параметров $b_{<}$ и $b_{>}$, по-казывающих вероятность перехода нуклона на подоболочку с орбитальным моментом l=3.

Нуклоны из подоболочки $2s_{1/2}$ могут переходить лишь в оболочку 2p, что приводит в случае полупрямого распада к вылету нуклонов с единственным значением l=1.

Важным этапом описываемого расчета является выбор опорных парциальных сечений, доля полупрямых процессов в которых известна и из которых рассчитываются полупрямые компоненты остальных парциальных сечений.

Вся наблюдаемая в реакциях протонного подхвата спектроскопическая сила дырки в подоболочке $1d_{3/2}$ ядра ²³Na приходится на основное состояние ядра ²²Ne. Таким образом, это состояние нужно рассматривать как чистую протонную дырку в подоболочке $1d_{3/2}$ относительно основного состояния ядра ²³Na. Поэтому сечение реакции ²³Na (γ , p_0)²²Ne должно быть целиком обусловлено полупрямым распадом. Дополнительным аргументом в пользу этого является отчетливая корреляция между спектроскопическими факторами основных состояний конечных ядер — (A-1, Z-1) и интегральными сечениями реакции (γ , p_0) для исследованных ядер 1d2s-оболочки, в том числе и для ²³Na [10].

Уровень с i=2 ядра ²²Na является изобараналогом основного состояния ядра ²²Ne. Спектроскопическая сила нейтронной дырки в подоболочке $1d_{3/2}$ также целиком содержится в одном этом состоянии. Следовательно, и сечение реакции (γ , n_2) должно быть полностью обусловлено полупрямым распадом ($\sigma^{int}(\gamma, n_2) = \sigma^{int}_{ph}(\gamma, n_2)$), и для его оценки нужно в качестве опорного сечения взять $\sigma^{int}(\gamma, p_0)$. Вне зависимости от величины параметра *а* возможные значения $\sigma^{int}_{ph}(\gamma, n_2)$, рассчитанные из $\sigma^{int}(\gamma, p_0)$, оказываются заключенными в интервале 0,4— 0,6 МэВ·мб/ср. Интервал неопределенности обусловлен незнанием параметров смешивания по орбитальному моменту $b_{<}$ и $b_{>}$.

Спектроскопическая сила как протонной, так и нейтронной дырки в подоболочке $1d_{5/2}$ ядра ²³Na распределена среди нескольких состояний. Наибольшая часть этой силы приходится на первое возбужденное состояние ядра ²²Ne и его изобараналог — уровень с i=6 ядра ²²Na. Поэтому доля полупрямых процессов в сечениях реакций (γ , p_1) и (γ , n_6) должна быть велика. Оба этих сечения могут быть использованы в качестве опорных для расчета полупрямых компонент сечений заселения уровней, содержащих примесь дырки в подоболочке $1d_{5/2}$.

Если в качестве опорного сечения взять $\sigma^{int}(\gamma, n_6)$, то это позволяет добиться хорошего воспроизведения экспериментальных данных в фотонейтронном канале, а для $\sigma^{int}_{ph}(\gamma, p_1)$ получить значение 0,8 МэВ·мб/ср. Для протонного канала был выполнен и другой вариант расчета, в котором в качестве опорного сечения использовалось $\sigma^{int}_{ph}(\gamma, p_1) = \sigma^{int}(\gamma, p_1)$. Оба варианта расчета дали для каждой из полупрямых компонент сечений реакций (γ, p_1) , (γ, p_2) и (γ, p_3) соответственно два значения (для i=3 это нижние значения в фигурных скобках — см. табл. 1), которые и обусловили интервал неопределенности в окончательных оценках (меньшее значение получено пересчетом из нейтронного канала).

Как отмечалось, использование в качестве опорного сечения $\sigma^{\text{int}}(\gamma, n_6)$ позволило добиться хорошего воспроизведения экспериментальных данных в нейтронном канале распада ДГР для уровней, по которым разбрасывается нейтронная дырка в подоболочке $1d_{5/2}$. Приведенные в табл. 2 результаты для уровней с i=0, 1, 3, 6, 7, 11, 15, 18 и 27 (для последних двух уровней речь идет о нижнем значении в фигурных скобках) получены при $a=0,7-0,8, b_{\leq}=0,98, b_{>}=1,0$. Таким образом, расчет указывает на доминирующий вылет нуклонов с l=3. Уровни с i=3, 6, 7 и 15 заселяются практически целиком за счет полупрямых процессов. Этот же вывод должен быть справедливым и для сечений заселения самых нижних уровней 22 Na с i=0, 1, 2. Таким образом, полученые из этих уровней величины σ_{ph}^{int} можно рассматривать как оценки сечений их заселения.

Расчет полупрямых компонент сечений заселения уровней, содержащих примесь дырки в подоболочке $1p_{1/2}$, был выполнен отдельно для протонного и нейтронного каналов. Вся найденная в реакциях подхвата спектроскопическая сила протонной дырки в подоболочке $1p_{1/2}$ ядра ²³Na приходится на одно (*i*=4) состояние ядра ²²Ne. Величина c^2S^- для этого состояния равна $1,73\pm0,6$ [4], что в пределах ошибок исчерпывает правило сумм для $1p_{1/2}$ -дырки, равное двум. Поэтому состояние с *i*=4 для ²²Ne можно рассматривать как чистую протонную дырку и сечение его заселения считать полностью обусловленным полупрямым распадом ДГР.

Нейтронная дырка в подоболочке $1p_{1/2}$ ядра ²³Na распределена среди четырех состояний ядра ²²Na (i=8, 9, 21 н $E_i=5,96$ МэВ). В качестве опорного сечения для расчета нейтронного канала можно выбрать либо $\sigma^{int}(\gamma, n_8)$, либо $\sigma^{int}(\gamma, n_9)$, это дает практически один и тот же результат. Мы полагали, что суммарное сечение заселения уровней с i=8 и 9 (равное 0,44 МэВ·мб/ср) целиком обусловлено полупрямым распадом, что приводит к оценкам, представленным в табл. 2. Значения для i=8, 9, 21 не зависят от параметров $a, b_<$ и $b_>$; для уровня с $E_i=5,96$ МэВ указанный интервал в оценке учитывает возможные изменения этих параметров. Полученный результат свидетельствует о том, что заселение уровней, по которым разбрасывается нейтронная дырка в подоболочке $lp_{1/2}$, происходит практически целиком за счет полупрямых процессов (для этих уровней выполняется соотношение (1) и после замены в нем σ_{ph}^{int} на σ^{int}). Кроме того, можно объяснить, почему в эксперименте не удалось наблюдать заселение уровня с $E_i = 5,96$ МэВ, имеющего большое значение S^- . Из-за низкой кинетической энергии нейтронов, заселяющих этот уровень, величина σ_{ph}^{int} для него мала и находится на границе чувствительности опыта.

Спектроскопическая сила протонной дырки в подоболочке $2s_{1/2}$ ядра ²³Na концентрируется практически целиком на одном (*i*=3) состоянии ядра ²²Ne. Нейтронная дырка распределена среди трех (*i*= =14, 18 и 27) состояний ²²Na. В качестве опорного сечения для оценки полупрямой компоненты интегральных сечений заселения перечисленных уровней было выбрано σ^{int} (γ , n_{27}). Во-первых, для уровня с *i*=27 значение S⁻($2s_{1/2}$) наибольшее и известно с наилучшей точностью. Вовторых, возможный вклад в σ_{ph}^{int} (γ , n_{27}) за счет примеси в этом уровне дырки в подоболочке $1d_{5/2}$ очень мал – 0,02 МэВ·мб/ср, и им можно пренебречь. Следовательно, σ_{ph}^{int} (γ , n_{27}) обусловлено практически полностью примесью дырки в подоболочке $2s_{1/2}$.

Если считать, что $\sigma^{\text{int}}(\gamma, n_{27})$ полностью формируется за счет полупрямых процессов, то для сечений реакций (γ , p_3) н (γ , n_{14}) получаются оценки, близкие к экспериментальным значениям. Вместе с тем нет достаточно убедительных оснований считать, что $\sigma^{\text{int}}_{ph}(\gamma, n_{27}) = \sigma^{\text{int}}(\gamma, n_{27})$, поскольку уровень с i=27 лежит довольно высоко по энергии и сечение его заселения может содержать значительную неполупрямую компоненту. Поэтому приведенные в табл. 1, 2 значения σ^{int}_{ph} для реакций (γ , p_3), (γ , n_{14}), (γ , n_{18}) и (γ , n_{27}) целесообразно рассматривать лишь как оценки сверху.

СПИСОК ЛИТЕРАТУРЫ

[1] Арзибеков У. Р. и др.//Ядерная физика. 1985. 42. С. 1059—1072. [2] Ишханов Б. С. и др.//Ядерная физика. 1981. 33. С. 581—590. [3] Габелко А. С. и др.//Ядерная физика. 1986. 44, № 5 (11). С. 1145—1152. [4] Епстр. М.// Atomic Data and Nuclear Data Tables, 1977. V. 19. Р. 23—61. [5] Епстр. М., Van der Leun C.//Nucl. Phys. 1978. АЗ10, N 1. [6] Ishkhanov B. S., Kapitonov I. M., Shumakov A. V.//Nucl. Phys. 1983. АЗ94. Р. 131—138. [7] Ишханов Б. С., Капитонов И. М., Неудачин В. Г., Эрамжян Р. А.//Физика элементарных частиц и атомного ядра. 1983. 14. С. 286—328. [8] Fallieros S., Goulard B.//Nucl. Phys. 1970. А147. Р. 593—600. [9] Акуйг R. Ö., Fallieros S.//Phys. Rev. Lett. 1971. 27. Р. 1016—1018. [10] Арзибеков У. Р. и др.// Ядерная физика. 1984. 40. С. 1121—1130.

Поступила в редакцию 13.12.85