СПИСОК ЛИТЕРАТУРЫ

[1] Кузелев М. В., Рухадзе А. А., Филиппычев Д. С. // Релятивистская высокочастотная электроника. Горький, 1981. С. 170--203. [2] Айзацкий Н. И. // Физика плазмы. 1980. 6, № 3. С. 597-602. [3] Кузелев М. В., Панин В. А., Рухадзе А. А., Филиппычев Д. С. // Письма в ЖТФ. 1984. 10, № 4. С. 228--230. [4] Кузелев М. В., Панин В. А. // Изв. вузов. Радиофизика. 1984. 27, № 4. С. 426-435. [5] Кузелев М. В., Панин В. А. // Изв. вузов. Радиофизика. 1984. 27, № 4. С. 426-435. [5] Кузелев М. В., Панин В. А. // ЖТФ. 1983. 53, № 11. С. 2130-2137. [7] Огнивенко В. В. // Радиотехн. и электроника. 1982. 27, № 9. С. 1818-1824. [8] Литвак А. Г., Петрухина В. И., Трахтенгерц В. Ю. // Письма в ЖЭТФ. 1973. 18, № 3, С. 190-193. [9] Кузелев М. В., Рухадзе А. А., Санадзе Г. В., Филиппычев Д. С. // ЖТФ. 1983. 53, № 2. С. 396-399. [10] Вильхельмссон Х., Вейланд Я. Когерентное нелинейное взаимодействие волн в плазме. М., 1981.

Поступила в редакцию-23.12.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 1

ОПТИКА И СПЕКТРОСКОПИЯ

УДК 539.196:621.378.325:546.314

МОДЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ СПЕКТРА И КИНЕТИКИ ИК ВОЗБУЖДЕНИЯ ТРЕХАТОМНЫХ МОЛЕКУЛ

С. В. Иванов, В. Я. Панченко, А. П. Сухоруков

(кафедра общей физики и волновых процессов)

1. Введение. В последние годы большой интерес исследователей вызывает изучение возбуждения и диссоциации малоатомных молекул под действием мощного лазерного ИК излучения [1-3]. Так, в [1] дан обзор экспериментальных работ по воздействию излучения на молекулы OCS, SO₂, NO₂, NH₃, DN₃ в бесстолкновительных условиях. В работах [2, 3] экспериментально исследовалось поглощение и теоретически моделировалась столкновительная диссоциация озона в поле излучения CO₂-лазера. В то же время следует отметить, что к настоящему времени процессы возбуждения малоатомных молекул теоретически изучены слабо и требуют подробного анализа.

Теоретический анализ процессов поглощения молекулярных газов в мощных ИК полях предполагает решение двух связанных задач: 1) расчет колебательно-вращательного (КВ) спектра вплоть до границы диссоциации и 2) выделение каналов возбуждения и моделирования кинетики заселенностей уровней. Решение первой задачи необходимо, как правило, всегда, поскольку для большинства малоатомных молекул экспериментальная спектроскопическая информация известна лишь для ограниченного числа нижних колебательных уровней (см., например, [4]).

В настоящей работе предлагается простая методика моделирования на ЭВМ кинетики поглощения импульсного ИК излучения трехатомными молекулами в столкновительных условиях, основанная на расчете КВ спектра, каналов и сечений каскадного возбуждения.

2. Расчет КВ спектра трехатомных молекул. Спектр колебательных уровней трехатомных молекул представляет собой сложную систему благодаря наличию трех типов колебаний и их ангармоническоговзаимодействия. Потенциальную функцию колебательной энергии молекулы в терминах нормальных координат можно записать следующим образом:

$$2V/hc = \sum_{i}^{3} \omega_{i}q_{i}^{2} + \sum_{ijk}^{3} k_{ijk}q_{i}q_{j}q_{k} + \sum_{ijkl}^{3} k_{ijkl}q_{i}q_{j}q_{k}q_{l} + \dots$$
(1)

где ω_i — гармонические потенциальные постоянные (нулевые частоты), k_{ijk} , k_{ijkl} — ангармонические постоянные 1-го и 2-го порядков.

Если ангармонические члены в (1) малы в сравнении с гармоническими, то во втором порядке теории возмущений из уравнения Шрёдингера следует выражение для уровней энергии связанных ангармонических осцилляторов [5]:

$$E^{0} = \sum_{i}^{3} \omega_{i} \left(v_{i} + \frac{d_{i}}{2} \right) + \sum_{i \leq j}^{3} x_{ij} \left(v_{i} + \frac{d_{i}}{2} \right) \left(v_{j} + \frac{d_{j}}{2} \right) + \sum_{i \leq j}^{3} g_{ij} l_{i} l_{j}, \quad (2)$$

$$l_{i} = v_{i}, \ v_{i} - 2, \ v_{i} - 4, \ \dots, 1 \ (0), \ i, \ j = 1, \ 2, \ 3,$$

где v_i , d_i — квантовое число и вырождение *i*-го колебания, x_{ij} и g_{ij} — постоянные ангармоничности. Однако формула (2) неверно описывает положение уровней энергии, связанных резонансным ангармоническим взаимодействием (случайными резонансами). Чтобы учесть этот эффект, можно внести поправки в рассчитанные по формуле (2) невозмущенные значения энергий уровней согласно теории возмущений для вырожденных систем [6].

Рассмотрим цепочку из N колебательных уровней, связанных случайными резонансами. Истинные волновые функции *p*-го состояния можно представить как суперпозицию невозмущенных волновых функций всех состояний цепочки с некоторыми вещественными весовыми коэффициентами, характеризующими степень перемешивания:

$$\psi_p = \sum_q^N C_{pq} \psi_q^0. \tag{3}$$

Матрица колебательного гамильтониана с учетом случайных резонансов является вещественной, симметрической и имеет размерность $N \times N$:

$$H_{pq} = \begin{cases} E_{p}^{0}, \ p = q, \\ V_{pq} = V_{qp}, \ p \neq q, \end{cases} p, q = 1, 2, \dots, N.$$
(4)

Диагональные элементы E_p^0 вычисляются по формуле (2), а недиагональные представляют собой матричные элементы возмущений. Наиболее сильными и часто встречающимися в трехатомных молекулах резонансными возмущениями являются резонансы Ферми и Дарлинга—Деннисона. Примерами могут служить резонансы v_1 — $2v_2$ (Ферми) в молекулах CO₂, OCS, H₂O и $2v_1$ — $2v_3$ (Дарлинга — Деннисона) в молекулах H₂O, NO₂, O₃.

Ограничиваясь рассмотрением случайных резонансов между невырожденными уровнями и используя собственные функции гармонического осциллятора в качестве базисных, для матричных элементов возмущений можно записать [7] резонанс Ферми:

$$V_{pq} = \frac{k_{122}}{2} \left[(v_2 + 1) (v_2 + 2) \frac{v_1}{2} \right]^{1/2}, \ |p\rangle = |v_1, v_2, v_3\rangle, \ |q\rangle = |v_1 - 1, v_2 + 2, v_3\rangle;$$
(5a)

резонанс Дарлинга-Деннисона:

$$V_{pq} = \frac{\gamma}{2} [v_1 (v_1 - 1) (v_3 + 1) (v_3 + 2)]^{1/2}, |p\rangle = |v_1, v_2, v_3\rangle, |q\rangle =$$
$$= |v_1 - 2, v_2, v_3 + 2\rangle.$$
(56)

Постоянная γ определяется коэффициентами разложения потенциальной функции в ряд (1) по нормальным координатам.

При вычислении матричных элементов возмущений вместо формул (5) можно использовать более точные выражения, полученные в базисе собственных функций ангармонического осциллятора. Так, для резонанса Дарлинга—Деннисона в [8] получена следующая формула:

$$V_{pq} = \frac{\gamma}{2} \left[y v_1 (v_1 - 1) (v_3 + 1) (v_3 + 2) \right]^{1/2},$$

$$y = \left[1 - x_1 (v_1 - 2) \right] \left[1 - x_1 (v_1 - 1) \right] (1 - x_3 v_3) \left[1 - x_3 (v_3 + 1) \right],$$
 (6)

$$x_i = 1/K_i, \ i = 1, 3,$$

где $K_i/2$ — число состояний *i*-й моды в модели осциллятора Морзе. По данным [8] для колебания v_1 озона $K_1 \simeq 217$, для $v_3 \quad K_3 \simeq 98$. Из этого следует, что матричные элементы (6) будут заметно отличаться от (5б) только при высоких уровнях колебательного возбуждения. Как показали оценки, коррекция матричных элементов приводит к изменению положения высоколежащих колебательных уровней озона в среднем на 3—8 см⁻¹.

Диагонализация матрицы (4) позволяет получить значения энергии колебательных уровней с учетом возмущений (собственные значения) и коэффициенты перемешивания взаимодействующих состояний (компоненты собственных векторов). Из-за перемешивания волновых функций становятся разрешенными не удовлетворяющие гармоничес-

ким правилам отбора $\sum_{i} |\Delta v_i| = 1$ переходы с выделенного уровня од-

ной цепочки на все уровни другой цепочки (рис. 1).

Дипольный момент перехода с j'-го уровня 1-й цепочки (в которой N' уровней) на k''-й уровень 2-й цепочки (в которой N'' уровней) можно представить в виде суперпозиции невозмущенных внутримодовых дипольных моментов переходов D_i^0 , используя разложение (3) для каждой цепочки в отдельности:

$$D_{j'k''} = \sum_{l}^{N} C'_{j'l} (C''_{k''l})^* D_{l}^{0}, \ N = \min(N', N'').$$
(7)

Результаты расчета положения колебательных уровней, проведенные вплоть до границы диссоциации основного электронного состояния молекулы О₃, удовлетворительно согласуются с имеющимися экспериментальными данными [9] (таблица). В качестве иллюстрации влияния резонансного ангармонического взаимодействия на положение уровней в таблице приведены также невозмущенные значения энергий.

36

Уровень	<i>Е</i> ⁰ , см ⁻¹	Pacyer E, cm ⁻¹	Эксперимент [9] E ± 10, см ⁻¹
(001)	1042,1	1042,1	1042
(100)	1103,1	1103,1	1103
(002)	2063,5	2058,0	2058
(101)	2110,8	2110,8	2110
(200)	2195,5	2201,1	2201
(003)	3064,4	3046,0	3046
(102)	3097,8	3085,9	3084
(201)	3168,7	3187,1	3185
(300)	3277,1	3289,0	.3289
(103)	4064,2	4028,5	4026
(202)	4121,3	4143,7	4136
(301)	4215,9	4251,6	4252
(400)	4347,9	4367,3	4357
(302)	5134,0	5179,0	5145
(500)	5407,9	5435,5	5435
(402)	6135,9	6213,9	6187
(600)	6457,2	6493,3	6497
(502)	7127,1	7238,3	7207
(700)	7495,6	7540,7	7523

Видно, что резонансное взаимодействие изменяет положение колебательных уровней в ряде случаев до 100 см⁻¹. Для расчета сечения поглощения лазерного излучения необходимо задание вращательной структуры спектра и форм линий поглощения. Для простоты ограничимся рассмотрением изогнутых трехатомных молекул, обладающих невырожденными колебательными уровнями.

Большинство изогнутых молекул обладает слабой асимметрией (SO₂, NO₂, O₃, H₂S, H₂Se), и их вращательные уровни можно приближенно рассчитывать в рамках модели симметричного волчка [5].

При моделировании учитывались также три механизма взаимодействия колебания и вращения: зависимость вращательных постоянных от колебательных квантовых чисел; перемешивание вращательных

постоянных из-за колебательных случайных резонансов; кориолисово взаимодействие. Если пренебречь вращательными возмущениями, то

Рис. 1. а — Схематическое изображение соседних цепочек перемешивания за счет резонансов Дарлинга—Денинсона: $|1\rangle = (v_1, v_2, v_3), |1'\rangle = (v_1+1, v_2, v_3), (v_1, v_2, v_3+1), |2\rangle = (v_1-2, v_2, v_3+2), |2'\rangle = (v_1-1, v_2, v_3+2), |2') = (v_1-2, v_2, v_3+2), |2') = (v_1-4, v_2, v_3+4), |3'\rangle = (v_1-4, v_2, v_3+4), |3'\rangle = (v_1-4, v_2, v_3+4), (v_1-4, v_2+1, v_3+4), (v_1-4, v_2, v_3+5). 6$ — Красчету дипольного момента колебательного перехода по формуле (7). Волнистые линии — резонансные взаимодействия, штрих-пунктир — внутримодовые переходы

Рис. 2. а — Зонная группировка уровней молекулы О₃, связанных каскадными переходами для линии возбуждения 10 R (40) СО₂-лазера. б — Схематическое изображение трех последовательных зон уровней и каскадных переходов между ними (к уравнению (9))

учет кориолисова взаимодействия в изогнутой молекуле сводится к изменению вращательной постоянной по отношению к оси, перпендикулярной плоскости молекулы [10]. Вероятность КВ пе-

рехода вычислялась в виде произведения фактора Хенля — Лондона для симметричного волчка [5] и вероятности колебательного перехода, полученной на основе (7).

Для формы линии поглощения, зависящей от давления и температуры газа, в расчетах была использована аналитическая аппроксимация контура Фойгта [11], дающая ошибку не более 3%. При определении сечения поглощения монохроматического излучения выполнялось суммирование по 200 близлежащим к лазерной частоте КВ переходам.

Расчеты каналов и сечений каскадного поглощения проводились для молекулы озона при ее возбуждении излучением 10-и 9-мкм диапа-

зонов генерации CO₂-лазера. Анализ показал, что переходы, разрешенные за счет случайных резонансов, составляют примерно 10% всех рассмотренных переходов и сравнимы по вероятности с переходами по симметричной моде. На рис. 2, *а* приведена схема колебательных уровней молекулы O₃, связанных каскадными переходами для линии возбуждающего излучения 10R (40) CO₂-лазера (987,62 см⁻¹). На этой частоте реализуется наиболее эффективный (по сечению возбуждения) канал, состоящий из переходов по асимметричной моде до уровня (003) и по комбинационным уровням вплоть до (502): (000) \rightarrow (001) \rightarrow \rightarrow (002) \rightarrow (003) \rightarrow (202) \rightarrow (302) \rightarrow (402) \rightarrow (502).

Данный канал оптического возбуждения можно описать в рамках простой модели возбуждения составного спектра: спектра ангармонического осциллятора с большими дипольными моментами переходов $(000) \rightarrow (001) \rightarrow (002) \rightarrow (003)$ и спектра с малым и примерно постоянным дипольным моментом переходов $(003) \rightarrow ... \rightarrow (502)$.

3. Моделирование каскадного ИК возбуждения трехатомных молекул. Каскадные переходы, имеющие место при оптическом возбуждении, можно разделить на два вида. Это, во-первых, переходы по КВ уровням (верхнее КВ состояние выделенной ступени возбуждения является нижним для следующей) и, во-вторых, каскадные колебательные переходы (начальное состояние выделенной ступени возбуждения не совпадает с конечным состояние выделенной ступени возбуждения процесс может идти без участия столкновений, в то время как во втором для эффективного возбуждения необходимо перераспределение вращательной энергии.

Нужно отметить, что выполнить условия последовательных КВ резонансов в реальной молекуле достаточно трудно, поэтому цепочки КВ переходов если и существуют, то короткие. Они могут прерываться, а затем возникать вновь. В режимах возбуждения, близких к бесстолкновительным, КВ каскадные переходы играют более заметную роль, чем в столкновительных, в которых энергия возбуждения быстро перераспределяется по всем вращательным уровням.

Поскольку рассматриваемые условия являются столкновительными, ограничимся рассмотрением только колебательных каскадных переходов. Уравнение для заселенности выделенного *n*-го (не основного) колебательного уровня имеет вид [12]

$$\dot{N}_n = W - W' - VV - VV' - VT - D, \tag{8}$$

где W, W' — операторы, описывающие приток частиц с нижних и отток на верхние уровни под действием излучения; VV, VV', VT операторы колебательного обмена энергией за счет столкновений; D оператор изменения населенности уровня из-за наличия химических реакций.

Как правило, характерные времена процессов колебательной релаксации и химических реакций в типичных условиях эксперимента по ИК возбуждению молекул намного превышают длительность импульса излучения. Пренебрегая на фоне лазерного импульса указанными процессами, запишем более подробно уравнение (8):

$$\dot{N}_{n} = \sum_{l}^{L} (W_{ln} N_{l} - W_{nl} N_{n}) - \sum_{l'}^{L'} (W_{nl'} N_{n} - W_{l'n} N_{l'}).$$
(9)

Здесь *l*, *l'* — текущие индексы суммирования по соседним уровням, отстоящим от выделенного примерно на величину лазерного кванта снизу и сверху соответственно; *L'*, *L* — число уровней в верхней и нижней «зонах» (см. рис. 2, б). Для вычисления скоростей W_{mk} вынужденных колебательных переходов используем квазистационарное приближение по населенностям КВ уровней: $\dot{n}^{\kappa B} = 0$. В этом случае (см., например, [12])

$$W_{mk} = \sum_{i} \frac{W_{mk}^{i} q_{m}^{i}}{(W_{mk}^{i} + W_{km}^{i}) \tau_{RT} + 1}, \quad W_{mk}^{i} = \frac{g_{k}^{i}}{g_{m}^{i}} W_{km}^{i}.$$
(10)

Здесь W^{i}_{mk} — скорость *i*-го вынужденного КВ перехода полосы $m \rightarrow k$, g_{k}^{i} , g_{m}^{i} — статистические веса КВ уровней, q_{m}^{i} — равновесная доля

Рис. 3. Кинетика населенностей нижних уровней O₃ с учетом каскадных процессов возбуждения при различных значениях пиковой интенсивности импульса I_{0} . Населенности нормированы на свои равновесные значения, лазерная линия — 9P(30) CO₂, чистый озон, P=10 Top, T=300 K, $I_{0}=1$ (1), 10 (2) и 100 MBT/см² (3), 1 ГВТ/см² (4)

молекул на вращательном подуровне *m*-го колебательного состояния, τ_{RT} — время вращательного обмена. Суммирование ведется по всем КВ переходам полосы $m \rightarrow k$, принимающим участие в поглощении.

Система уравнений (9)—(10) для всей последовательности колебательных уровней, связанных излучением, представляет собой математическую формулировку предлагаемой модели каскадного поглощения. Решение задачи возбуждения трехатомных молекул производилось в два этапа. Сначала для фиксированной частоты лазерного излучения, давления и температуры газа решалась чисто спектроскопическая за-

40

дача расчета каналов и сечений возбуждения, а затем полученная информация использовалась при решении системы кинетических уравнений (9)-(10), которые интегрировались на ЭВМ БЭСМ-6 методом Гира при начальных условиях, соответствующих больцмановскому распределению. Результаты расчета временной зависимости населенностей некоторых нижних колебательных уровней молекулы О3 приведены на рис. 3. Из рис. 3 видно, что даже в очень интенсивных полях возбуждение уровня (100) мало, а изменение населенностей (002) и (101) по сравнению с равновесными значительно. Особенно быстро с ростом пиковой интенсивности импульса растет населенность уровня (101). Можно наблюдать проявление эффекта насыщения колебательных переходов по мере увеличения интенсивности импульса **OT** 1 МВт/см² до 1 ГВт/см². Так, переходы (000)→(001) и (001)→(002) уже при сотнях МВт/см² имеют ярко выраженное насыщение, в то время как переходы (000)→(100) и (001)→(101) практически его не испытывают из-за малой величины сечения поглощения.

СПИСОК ЛИТЕРАТУРЫ

[1] В І о е m b е г g е n N. et al.//J. Molec. Struct. 1984. 113. Р. 69—82. [2] Г о рдненко В. М. и др.//Квант. электроника. 1982. 9, № 11. С. 2204—2211. [3] Джиджоев М. С. и др.//Квант. электроника. 1984. 11, № 7. С. 1357—1363. [4] Зуев В. Е. Распространение лазерного излучения в атмосфере. М., 1981. [5] Г е р ц б е р г Г. Колебательные и вращательные спектры многоатомных молекул. М., 1949. [6] Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивистская теория. М., 1974. [7] Nielsen H. H.//Handbuch der Physik./Ed. S. Flügge. Berlin & N. Y. Springer-Verlag. 1959. V. 37/1. [8] В е n j a m i n I. et al//J. Phys. Chem. 1983. 87. Р. 727—729. [9] І m г е D. G. et al.//J. Phys. Chem. 1982. 86. Р. 2564—2566. [10] Тапака Т., Могіпо Y.//J. Molec. Spectr. 1970. 33, N 3. Р. 538—551. [11] Матвеев В. С.//Журн. прикл. спектр. 1972. 16, № 2. С. 228—233. [12] Г о р днец Б. Ф., О с и п о В А. И., Ш е л е п и н Л. А. Кинетические процессы в газах и молекулярные лазеры. М., 1980. С. 182—184.

Поступила в редакцию-31.10.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 1

АКУСТИКА

УДК 535.241.13:534

АКУСТООПТИЧЕСКАЯ ЯЧЕЙКА КАК АМПЛИТУДНО-ФАЗОВЫЙ ТРАНСПАРАНТ

В. И. Балакший, С. Д. Григоров, В. Н. Парыгин

(кафедра физики колебаний)

Акустооптические пространственные модуляторы света все шире используются в системах оптической обработки информации в качестве элементов, осуществляющих ввод обрабатываемого сигнала в световой пучок [1]. При этом сигнал s(t) сначала накладывается на высокочастотную несущую f_0 , а затем подается на пьезопреобразователь I(рис. 1) акустооптической ячейки 2 и возбуждает в ней бегущую акустическую волну 3. Частота f_0 выбирается в середине полосы пропускания пьезопреобразователя. Проходящий через ячейку световой пучок 4 дифрагирует в акустическом поле, в результате чего обрабатываемая информация переносится в дифрагированный пучок 5 в виде пространственно-временной реплики сигнала s(t).

41