дача расчета каналов и сечений возбуждения, а затем полученная информация использовалась при решении системы кинетических уравнений (9)-(10), которые интегрировались на ЭВМ БЭСМ-6 методом Гира при начальных условиях, соответствующих больцмановскому распределению. Результаты расчета временной зависимости населенностей некоторых нижних колебательных уровней молекулы О3 приведены на рис. 3. Из рис. 3 видно, что даже в очень интенсивных полях возбуждение уровня (100) мало, а изменение населенностей (002) и (101) по сравнению с равновесными значительно. Особенно быстро с ростом пиковой интенсивности импульса растет населенность уровня (101). Можно наблюдать проявление эффекта насыщения колебательных переходов по мере увеличения интенсивности импульса **OT** 1 МВт/см<sup>2</sup> до 1 ГВт/см<sup>2</sup>. Так, переходы (000)→(001) и (001)→(002) уже при сотнях МВт/см<sup>2</sup> имеют ярко выраженное насыщение, в то время как переходы (000)→(100) и (001)→(101) практически его не испытывают из-за малой величины сечения поглощения.

### СПИСОК ЛИТЕРАТУРЫ

[1] В І о е m b е г g е n N. et al.//J. Molec. Struct. 1984. 113. Р. 69—82. [2] Г о рдненко В. М. и др.//Квант. электроника. 1982. 9, № 11. С. 2204—2211. [3] Джиджоев М. С. и др.//Квант. электроника. 1984. 11, № 7. С. 1357—1363. [4] Зуев В. Е. Распространение лазерного излучения в атмосфере. М., 1981. [5] Г е р ц б е р г Г. Колебательные и вращательные спектры многоатомных молекул. М., 1949. [6] Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивистская теория. М., 1974. [7] Nielsen H. H.//Handbuch der Physik./Ed. S. Flügge. Berlin & N. Y. Springer-Verlag. 1959. V. 37/1. [8] В е n j a m i n I. et al//J. Phys. Chem. 1983. 87. Р. 727—729. [9] І m г е D. G. et al.//J. Phys. Chem. 1982. 86. Р. 2564—2566. [10] Тапака Т., Могіпо Y.//J. Molec. Spectr. 1970. 33, N 3. Р. 538—551. [11] Матвеев В. С.//Журн. прикл. спектр. 1972. 16, № 2. С. 228—233. [12] Г о р днец Б. Ф., О с и п о В А. И., Ш е л е п и н Л. А. Кинетические процессы в газах и молекулярные лазеры. М., 1980. С. 182—184.

Поступила в редакцию-31.10.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 1

#### АКУСТИКА

УДК 535.241.13:534

## АКУСТООПТИЧЕСКАЯ ЯЧЕЙКА КАК АМПЛИТУДНО-ФАЗОВЫЙ ТРАНСПАРАНТ

### В. И. Балакший, С. Д. Григоров, В. Н. Парыгин

(кафедра физики колебаний)

Акустооптические пространственные модуляторы света все шире используются в системах оптической обработки информации в качестве элементов, осуществляющих ввод обрабатываемого сигнала в световой пучок [1]. При этом сигнал s(t) сначала накладывается на высокочастотную несущую  $f_0$ , а затем подается на пьезопреобразователь I(рис. 1) акустооптической ячейки 2 и возбуждает в ней бегущую акустическую волну 3. Частота  $f_0$  выбирается в середине полосы пропускания пьезопреобразователя. Проходящий через ячейку световой пучок 4 дифрагирует в акустическом поле, в результате чего обрабатываемая информация переносится в дифрагированный пучок 5 в виде пространственно-временной реплики сигнала s(t).

41



В реальных акустооптических устройствах обработки информации обычно применяется амплитудная модуляция высокочастотной несущей сигналом s(t). В данной работе рассматривается более общий случай амплитудно-фазовой модуляции.

Рис. 1. Акустооптический транспарант: 1— пьезопреобразователь, 2— ячейка, 3— акустическая волна, 4— падающий пучок, 5— дифрагированный пучок

Возбуждаемую в ячейке акустическую волну можно записать. в виде

$$a(z, t) = a_0 s(t - z/v) \exp[j(\Omega_0 t - K_0 z)] \operatorname{rect}(z/w - 1/2),$$
(1)

где  $\Omega_0 = 2\pi f_0$ ,  $K_0 = 2\pi f_0/v$ , v — скорость звука,  $a_0$  — константа, определяемая параметрами пьезопреобразователя. Функция s(t) в общем случае является комплексной:  $s(t) = s_0(t) \exp[j\varphi(t)]$ , где  $s_0(t)$  дает амплитудную модуляцию акустической волны, а  $\varphi(t)$  — фазовую. Прямоугольная функция rect(·) учитывает конечную апертуру ячейки w по оси z.

При малой эффективности дифракции угловое распределение дифрагированного света описывается выражением [2]

$$U_{d}(\theta_{d}) = -\frac{q^{*}l}{2} \frac{k_{l}}{2\pi} \int_{-\infty}^{\infty} U_{i}(\theta_{i}) \operatorname{sinc} \frac{\eta(\theta_{l}, \theta_{d})l}{2\pi} \int_{-\infty}^{\infty} A(K) \,\delta(k_{d}\theta_{d} - k_{i}\theta_{i} - K) \,dKd\theta_{i},$$
(2)

где l — ширина акустического пучка в направлении распространения света,  $U_i(\theta_i)$  и  $U_d(\theta_d)$  — угловые спектры падающего и дифрагированного излучения,  $k_i$  и  $k_d$  — соответственно волновые числа,  $q^*$  — параметр акустооптического взаимодействия, A(K) — спектр акустического поля:

$$A(K) = \int_{-\infty}^{\infty} a(z, t) \exp(jKz) dz.$$
(3)

Коэффициент фазового синхронизма  $\eta$  при малых углах падения  $\theta_i$  и дифракции  $\theta_d$  имеет вид

$$\eta(\theta_i, \ \theta_d) = k_i (1 - \theta_i^2/2) - k_d (1 - \theta_d^2/2).$$
(4)

Если на ячейку под углом  $\theta_0$  падает плоская световая волна с амплитудой  $u^*$ , то

$$U_i(\theta_i) = u^* \left(2\pi/k_i\right) \delta\left(\theta_i - \theta_0\right). \tag{5}$$

Подставляя (5) в (2), имеем

$$U_d(\theta_d) = -\frac{q^*l}{2} u^* A \left( k_d \theta_d - k_i \theta_0 \right) \operatorname{sinc} \frac{\eta \left( \theta_0, \theta_d \right) l}{2\pi}.$$
 (6)

Структура поля дифрагированного света на выходе ячейки определяется обратным преобразованием Фурье функции (6). Учитывая изменение направления распространения света при дифракции, перейдем к системе координат x'z', повернутой относительно xz на угол  $\Theta_0 + K_0/k_d$ . Тогда для комплексной амплитуды светового поля получим

$$u_{d}(z') = \frac{k_{d}}{2\pi} \int_{-\infty}^{\infty} U_{d}\left(\theta'_{d} + \theta_{0} + \frac{K_{0}}{k_{d}}\right) \exp\left(-jk_{d}\theta'_{d}z'\right) d\theta'_{d} =$$
$$= -\frac{q^{*}l}{2} \frac{u^{*}}{2\pi} \exp\left(jK_{0}z'\right) \int_{-\infty}^{\infty} A\left(\xi\right) \operatorname{sinc} \frac{\eta\left(\theta_{0}, \xi\right)l}{2\pi} \cdot \exp\left(-j\xi z'\right) d\xi, \quad (7)$$

тде  $\xi = k_d \theta_d' + K_0$ .

Здесь множитель sinc() под интегралом описывает селективные свойства акустооптического взаимодействия, которые проявляются тем сильнее, чем больше длина взаимодействия l [2]. В режиме дифракции Рамана—Ната, которому соответствует предельный случай  $l \to 0$ , угловая селективность исчезает и выражение (7) принимает вид

$$u_{d}(z') = -\frac{q^{*l}}{2} \frac{u^{*}}{2\pi} \exp(jK_{0}z') \int_{-\infty}^{\infty} A(\xi) \exp(-j\xi z') d\xi =$$
  
=  $-\frac{q^{*l}}{2} u^{*}a_{0}s(t-z'/v) \exp(j\Omega_{0}t) \operatorname{rect}(z'/w-1/2).$  (8)

Соотношение (8) говорит о том, что акустооптическая ячейка работает как транспарант, создающий в дифрагированном пучке пространственное изображение сигнала s(t) (точнее, его выборки длительностью  $\tau = \omega/v$ ). Частота дифрагированного света смещена относительно частоты падающего излучения на величину Ω0; это обстоятельство отражает множитель  $\exp(i\Omega_0 t)$ . Как и следовало ожидать, сформированное изображение перемещается по оси z' со скоростью звука v. Если необходимо получить неподвижное изображение (например, в задаче воспроизведения телевизионного изображения по его видеосигналу), то для этого достаточно расположить после ячейки дефлектор, отклоняющий дифрагированный пучок со скоростью звука в направлении, противоположном направлению распространения ультразвука в ячейке. Другой способ заключается в стробоскопическом освещении ячейки короткими импульсами света в момент заполнения всей ячейки акустическим сигналом. Чтобы качество изображения заметно не ухудшалось, длительность импульсов не должна превышать  $t_0 = w/Nv$ , где *N* — число разрешимых элементов в строке изображения.

Из выражения (8) следует, что вид пространственной модуляции дифрагированной волны точно соответствует виду временной модуляции высокочастотной несущей. При амплитудной модуляции несущей, когда  $\varphi(t) \equiv 0$ , имеет место чисто амплитудная модуляция дифрагированного пучка, тогда как фазовая вызывает также фазовую модуляцию дифрагированной волны. Последнее представляет особый интерес, поскольку это означает, что с помощью акустооптической ячейки можно формировать не только амплитудную, но и фазовую структуру изображений и таким образом создавать объемные изображения, подобные голографическим.

Исходным сигналом для таких изображений могут являться видеосигналы, получаемые с помощью акустооптического развертывающего устройства — АРУС [2]. В АРУС строчная развертка изображений осуществляется бегущим акустическим цугом, на котором последовательно дифрагируют световые лучи от различных точек объекта. В работах [3, 4] показано, что устройства типа АРУС позволяют регистрировать как амплитудную, так и фазовую структуру световых полей.

Световое поле изображения в общем случае можно представить. в виде

$$u(z) = u_0(z) \exp\left[j\gamma(z)\right], \qquad (9)$$

где функции  $u_0(z)$  и  $\gamma(z)$  описывают пространственное распределение амплитуды и фазы в рассеянной объектом волне. При пробегании акустического цуга по ячейке в АРУС на фотоприемники поступает информация о локальных значениях амплитуды  $u_0(z)$  и фазового градиента  $\gamma'(z) = d\gamma/dz$  светового поля. После соответствующей обработки формируются два видеосигнала развертки:  $i_a(t) \sim u_0(vt)$  и  $i_{\Phi}(t) \sim \gamma'(vt)$ .

Для восстановления исходного изображения необходимо амплитуду высокочастотной несущей промодулировать сигналом  $i_a(t)$ , а частоту — сигналом  $i_{\Phi}(t)$ . Тогда получим

$$s_0(t) \sim i_a(t) \sim u_0(vt); \quad \varphi(t) \sim \int i_{\Phi}(t) dt \sim \gamma(vt). \tag{10}$$

Если восстанавливающая акустооптическая ячейка аналогична считывающей, то при возбуждении ее сигналом (10) в дифрагированном пучке возникнет исходное изображение (9), движущееся со скоростьюзвука:

$$u_d(z') \sim u_0(vt - z') \exp\left[j\gamma (vt - z')\right].$$

В режиме дифракции Рамана—Ната разрешение полученного изображения ограничивается только полосой пьезопреобразователя  $\Delta f_n$ . Чтобы преобразователь не ухудшал качества изображения, необходимо, чтобы его полоса была не меньше ширины спектра возбуждающего радиосигнала  $s(t)\exp(j\Omega_0 t)$ . В режиме брэгговской дифракции появляются дополнительные ограничения, обусловленные селективными свойствами акустооптического взаимодействия. Поскольку этот режим дифракции представляет наибольший практический интерес, рассмотрим его подробнее.

Предположим, что несущая  $\Omega_0$  промодулирована по амплитудегармоническим сигналом с частотой  $\Omega_m$ , т. е.  $s(t) = s_0(t) = = s_0(1 + m \cos \Omega_m t)$ . Тогда из (1) и (3) имеем

$$A(K) = a_0 s_0 w \exp\left\{j \left[\Omega_0 t + \frac{(K - K_0) w}{2}\right]\right\} \left\{\operatorname{sinc} \frac{(K - K_0) w}{2\pi} + \frac{m}{2} \sum_{\alpha = \pm 1} \exp\left[i\alpha \left(\Omega_m t - \frac{K_m w}{2}\right)\right] \operatorname{sinc} \frac{(K - K_0 - \alpha K_m) w}{2\pi}\right\}, \quad (11)$$

где  $K_m = \Omega_m/v$ . Отсюда видно, что спектр акустического поля содержит три линии, уширенные вследствие ограниченных размеров поля по оси z. Линии располагаются вблизи пространственных частот  $K_0$ ,  $K_0 \pm K_m$  и имеют ширину  $\Delta K = 4\pi/w$  (рис. 2).

Чтобы ячейка могла обеспечить высокое разрешение формируемого изображения, ее параметры должны удовлетворять условию  $k_i w \gg \gg K_0 l$ . При выполнении этого условия ширина функции sinc  $[\eta(\xi) l/2\pi]$ в интеграле (7) будет много больше ширины функций sinc ( $\cdot$ ) в формуле (11) (см. рис. 2). Поэтому функцию sinc  $[\eta(\xi) l/2\pi]$  можно вынести из-под знака интеграла. В результате получим

$$u_{d}(z') = -\frac{g^{*l}}{2} u^{*}a_{0}s_{0}\exp\left(j\Omega_{0}t\right) \left\{ \operatorname{sinc}\left\{\frac{l}{2\pi}\left[k_{l}-k_{d}+K_{0}\left(\theta_{0}+\frac{K_{0}}{2k_{d}}\right)\right]\right\} + \frac{m}{2}\sum_{\alpha=\pm1}\exp\left[i\alpha\left(\Omega_{m}t-K_{m}z'\right)\right]\operatorname{sinc}\left\{\frac{l}{2\pi}\left[k_{i}-k_{d}+(K_{0}+\alpha K_{m})\times\left(\theta_{0}+\frac{K_{0}+\alpha K_{m}}{2k_{d}}\right)\right]\right\}\right\}\operatorname{rect}\left(\frac{z'}{w}-\frac{1}{2}\right).$$
(12)

Выражение (12) описывает световую волну, амплитуда которой изменяется вдоль оси z' по синусоидальному закону с пространственным периодом  $2\pi/K_m$ . Глубина пространственной модуляции M опрелеляется функциями sinc(·) и зави-

сит от конкретных значений  $\theta_0$ ,  $K_0$ ,  $K_m$ , а также от типа акустооптического взаимодействия.

В случае изотропной дифракции  $k_i = k_d = k$  [2]. Чтобы обеспечить

| Рис. | 2. | Спектр акустич      | еского | поля | A(K)   |
|------|----|---------------------|--------|------|--------|
| (1)  | И  | передаточная        | функі  | ция  | ячейки |
|      |    | $sinc(\eta l/2\pi)$ | (2)    |      |        |

наиболее эффективное взаимодействие света с ультразвуком, угол падения  $\theta_0$  надо выбрать равным углу Брэгга на частоте  $f_0: \theta_0 = \theta_B(K_0) = -K_0/2k$ . Если, кроме того, выполняется условие  $K_0^{2l}/k \gg 2\pi$ , определяющее брэгговский режим дифракции, то формула (12) упрощается:

$$u_d(z') = -\frac{q^*l}{2} u^* a_0 s_0 \exp\left(j\Omega_0 t\right) \left\{ 1 + m \operatorname{sinc}\left(\frac{lK_0}{4\pi k} K_m\right) \cos\left[K_m(vt - z')\right] \right\} \times \operatorname{rect}\left(\frac{z'}{w} - \frac{1}{2}\right).$$

Отсюда следует, что глубина пространственной модуляции

 $M = m \operatorname{sinc} \left( l K_0 K_m / 4\pi k \right). \tag{13}$ 

Зависимость  $M(K_m)$  представляет собой пространственно-частотную характеристику акустооптического транспаранта. Она позволяет по выбранному допустимому уровню изменения M найти ширину полосы пространственных частот  $\Delta K_m$  и, следовательно, предельное разрешение изображения  $d_{\min}=2\pi/\Delta K_m$ . Полное число разрешимых элементов в строке изображения дается выражением  $N=w/d_{\min}=\Delta f_m \tau$ , где  $\tau=w/v$  — постоянная ячейки, определяющая быстродействие акустооптического транспаранта. Из (13) имеем

$$\Delta K_m = 1.8\pi k/lK_0; \quad d_{\min} = 1.12l\lambda f_0/v; \quad N = 0.89wv/l\lambda f_0,$$

где  $\lambda$  — длина волны света в материале ячейки.

При анизотропной дифракции, когда  $k_i \neq k_d$ , предельное разрешение сильно зависит от геометрии акустооптического взаимодействия. Оптимальной является область вблизи экстремума зависимости  $\theta_B(K_0)$  [2]. В этом случае (12) принимает вид

$$\begin{aligned} u_d\left(z'\right) &= -\frac{q^{*l}}{2} \, u^* a_0 s_0 \exp\left(j\Omega_0 t\right) \left\{ 1 + m \operatorname{sinc}\left(\frac{l}{4\pi k_d} \, K_m^2\right) \cos\left[K_m\left(vt - z'\right)\right] \right\} \times \\ & \times \operatorname{rect}\left(\frac{z'}{w} - \frac{1}{2}\right). \end{aligned}$$

-45

Следовательно,

$$M = m \operatorname{sinc} (lK_m^2/4\pi k_d); \ \Delta K_m = \sqrt{1,8\pi k_d/l}; \ d_{\min} = \sqrt{1,12\lambda l}.$$

Анизотропная дифракция с оптимальной геометрией взаимодействия позволяет получить в  $(f_0/v) \sqrt{1.12\lambda l}$  раз более высокое разрешение, чем изотропная.

При фазовой модуляции несущей гармоническим сигналом  $s(t) = s_0 \exp(j\varphi_0 \cos \Omega_m t)$ . Если глубина модуляции мала ( $\varphi_0 \ll 1$ ), то  $s(t) \approx s_0(1+j\varphi_0 \cos \Omega_m t)$ . Следовательно, этот случай сводится к предыдущему заменой *m* на  $j\varphi_0$ . Частотные характеристики имеют тот же вид, что и при амплитудной модуляции. Таким образом, независимо от вида модуляции разрешение, обеспечиваемое акустооптическим транспарантом в брэгговском режиме дифракции, определяется селективными свойствами акустооптического взаимодействия.

### СПИСОК ЛИТЕРАТУРЫ

[1] Кулаков С. В. Акустооптические устройства спектрального и корреляционного анализа сигналов. Л., 1978. [2] Балакший В. И., Парыгин В. Н., Чирков Л. Е. Физические основы акустооптики. М., 1985. [3] Балакший В. И., Иванов В. В., Упасена Х. А. // Изв. вузов. Радиоэлектроника. 1983. 26, № 11. С. 3—7. [4] Балакший В. И. // Радиотехн. и электроника. 1982. 27, № 7. С. 1413—1419.

Поступила в редакцию-25.12.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 1

### УДК 534.26

# ВЛИЯНИЕ КАУСТИЧЕСКОГО ФАЗОВОГО СДВИГА НА ОТРАЖЕНИЕ РЭЛЕЕВСКОЙ ВОЛНЫ ОТ РЕБРА КЛИНА

### В. В. Крылов

(кафедра акустики)

Согласно известным положениям геометрической оптики (акустики), при касании лучом каустики волнового поля соответствующая данному лучу волна приобретает сдвиг по фазе  $\Delta \phi_k$ , называемый каустическим фазовым сдвигом [1, 2]. В частности, при отражении от простой каустики  $\Delta \psi_k = -\pi/2$ . Обычно этот сдвиг не имеет практического значения, так как, влияя только на фазу отраженного поля, он никак не проявляется в экспериментах. В данной работе анализируется случай, когда каустический сдвиг фазы становится существенным, определяя не только фазу, но и абсолютную величину поля в точке наблюдения.

Такого рода ситуация возникает в задаче об отражении наклонно падающей поверхностной акустической волны Рэлея от ребра остроугольного упругого клина, которая представляет значительный самостоятельный интерес для ультразвуковой дефектоскопии, акустоэлектроники и сейсмологии [3—5]. Точного решения эта задача не имеет даже в случае падения поверхностной волны по нормали к ребру клина [4, 5]. Что же касается наклонного падения, то оно практически вообще не обсуждалось в литературе. Ниже используется приближенный подход к решению рассматриваемой задачи [6, 7], справедливый для остроугольных клиньев (с углами раствора клина менее 50—60°) и основанный на представлении падающей на ребро клина рэлеевской