зом, обнаружено, что тензор электронной поляризуемости макромолекулы белка становится более симметричным при увеличении суммарного заряда на ее поверхности. Это, по-видимому, связано с тем, что при вариациях pH раствора изменяется характер взаимодействия поверхностных групп белка с молекулами окружающей воды.

Результаты исследований ЯМР-релаксации воды вблизи поверхности белка на тех же объектах и при тех же условиях [7] могут быть объяснены аналогичным образом.

СПИСОК ЛИТЕРАТУРЫ

[1] Цветков В. Н., Эскин В. Е., Френкель С. Я. Структура макромолекул в растворах. М., 1964. [2] Фабелинский И. Л. Молекулярное рассеяние света. М., 1965. [3] Тенфорд Ч. Физическая химия полимеров. М., 1965. [4] Edsall J. T., Edelhoch H., Lontie R., Morrison P. R.//J. Am. Chem. Soc. 1950. 72. Р. 4641--4646. [5] Eisenberg H. Multicomponent solution of biological macromolecules. Oxford. 1974. [6] Петрова Г. П., Соломатин В. С., Шелковников Н. К.// //Вести. Моск. ун-та. Сер. З. Физ. Астрон. 1983. 24, № 6. С. 53-56. [7] Вострикова Н. Г., Денисов В. П., Петрусевич Ю. М., Ревокатов О. П.//Вести. Моск. ун-та. Сер. З. Физ. Астрон. 1986, 27, № 5. С. 76-78.

Поступила в редакцию 29.12.85 После переработки — 11.09.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 2

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 539.211

РОЛЬ СТРУКТУРНЫХ ДЕФЕКТОВ И ПРИМЕСЕЙ В РЕКОНСТРУКЦИИ Поверхности кремния (100)

В. В. Бурмистров, Е. М. Дубинина, С. С. Еловиков, В. П. Иванников

(кафедра электроники)

Многочисленные эксперименты по дифракции медленных электронов (ДМЭ) показали, что структура поверхности кремния (100) наблюдается реконструированной в виде двухдоменных (2×1) или $c(4 \times 2)$ структур [1-3]. В ряде работ были представлены модели, в которых перестройка структуры реализуется либо путем различных смещений атомов [1, 4-9], либо путем образования поверхностных вакансий [2, 3, 10, 11].

Общий вывод при анализе многочисленных работ, в том числе недавних [12, 13], рассматривающих (100) грань кремния, состоит в следующем: во всех случаях результаты расчетов качественно согласуются с экспериментом, но окончательно им не подтверждаются; всеобъемлющей модели, описывающей реконструкцию, не существует. Кроме того, все упомянутые выше модели имели дело с чистой, т. е. идеальной, поверхностью кристалла, что в эксперименте никогда не реализуется.

В настоящей работе для анализа (2×1) структуры и впервые зафиксированных нами на поверхности Si (100) сверхструктур $p(2 \times 2)$, $c(4 \times 4)$ и (4×1) наряду с ДМЭ-методикой применялась электронная оже-спектроскопия. В приближении валентных связей построена модель взаимного перехода указанных элементарных эчеек друг в друга. Решающая роль в рамках предлагаемой модели отводится примесям и структурным дефектам. Методика и результаты эксперимента. Монокристалл Si (100) с удельным сопротивлением 120—150 Ом см, промытый в чистом спирте и затем прокипяченный в дистиллированной воде в течение 5 мин, помещали в сверхвысоковакуумную камеру, снабженную энергоанализатором типа «цилиндрическое зеркало» (разрешение $\sim 0,45\%$) и четырехсеточной ДМЭ-оптикой с подвижным цилиндром Фарадея для измерения интенсивности дифрагированного пучка *I* при изменении напряжения первичного пучка *V*. Температуру кристалла оценивали с помощью термопары. В области высоких температур ($T \ge 900^{\circ}$ C) ее ка-

Рис. 1. ДМЭ-изображения поверхности кремния (100) без облучения: $a - c(4 \times 4)$, $\delta - p(2 \times 2)$; $a - (2 \times 1)$ и после электронного облучения структуры $c(4 \times 4)$; $z - (4 \times 1)$. Внизу соответствующие дифракционные картины представлены схематически

либровали с помощью пирометра. Электронное облучение образца (энергия $E=1\div3$ кэВ, ток пучка $I=100\div300$ мкА при диаметре пучка d=1 мм) и регистрация спектров интенсивности (рабочие параметры: $V=50\div300$ эВ, I=1 мкА) осуществлялись с использованием одной и той же пушки при неизменном положении подложки. Все ДМЭ-изображения фотографировались в интервале температур $20-40^{\circ}$ С. Рабочее давление остаточных газов в камере составляло $10^{-8}-10^{-7}$ Па. Контроль чистоты поверхности и изменений в электронном спектре кремния осуществлялся методом электронной оже-спектроскопии.

Когда отношение амплитуд оже-пиков примесей C, O и N к сигна-Si находилось в пределах: $I_C/I_{S1} \le 8 \cdot 10^{-4}$, $I_O/I_{S1} \le 2 \cdot 10^{-4}$, $I_N/I_{S1} \le 10^{-4}$ ЛУ . <2.10-4 (для этого требовался более чем 7-часовой отжиг подложки при T=750°C), на ДМЭ-экране возникала четкая дифракционная картина $c(4 \times 4)$ (рис. 1, *a*). Соответствующие этому случаю спектр интенсивности 00-рефлекса и форма оже-пика кремния приведены на рис. 2 (кривая 1). После менее длительного отжига (5÷7ч) при T=750°C $(8 \cdot 10^{-4} < I_C/I_{s1} < 2 \cdot 10^{-3}, I_O/I_{s1} < 2 \cdot 10^{-4}, I_N/I_{s1} < 2 \cdot 10^{-4})$ фиксировалась структура $p(2 \times 2)$ (рис. 1, б). Наконец, если кристалл отжигали OT 15 мин до 5ч (2·10⁻³ « $I_{\rm C}/I_{\rm Si} \le 10^{-2}$, 2·10⁻⁴ $\le I_{\rm O}/I_{\rm Si} \le 2\cdot10^{-3}$, $I_N/I_{\rm Si} \le 2\cdot10^{-4}$), то регистрировали обычно наблюдаемую от (100) грани Si двухдоменную (2×1) картину (рис. 1, в; форма оже-пика кремния в обоих случаях не отличалась от приведенной на рис. 2 (кривая 1), но спектр

интенсивности 00-рефлекса имел свои особенности, проявляющиеся в изменении величины и формы отдельных дифракционных максиму-мов).

Построенные по данным рис. 2 (1) в рамках кинематической теории [14] зависимости энергии V первичных электронов от квадрата порядка отражения n² обнаружили, что пять зафиксированных брэг-

Рис. 2. Спектр интенсивности 00рефлекса и форма оже-пика Si до (1) и после (2) электронного облучения структуры с (4×4) говских максимумов (с четными n) лежат на одной прямой (ее пересечение с осью ординат дает $V_{01} \sim$ ~5,5 эВ) и еще четыре пика (с нечетными n) — на другой ($V_{02} \approx$ $\approx 8,5$ эВ). Указанные прямые отвечают как бы двум решеткам, сосуществующим в приповерхностной области кристалла. Постоянные решеток равны соответственно 5,15± ±0,10 и 5,30±0,10 Å, что несколько меньше межплоскостного расстояния в объеме (5,42 Å).

При вычислении температуры Дебая 🛛 [15] для различных порядков отражения были обнаружены два ряда значений: $\Theta = 540 \pm 15$... 650 ± 15 К для n=10 и 12 и $\Theta=570\pm15$ И И 650±15 К для 11. n=9И Брэгговский максимум (008)не полчиняется кинематическому описанию. Существенно по-разному ведет себя с изменением температуры и энергин V и полуширина $E_{1/2}$ брэгговских пиков для четных и нечетных n. Для исследованных четных $n E_{1/2}$ практически не зависит от температуры (до 800 К для *n*=8 и до 550 К для n=10, 12, 14), для нечетных же $n E_{1/2}$ быстро растет с повышением температуры. В случае четных *n* при изменении энергии V выполняется соотношение $E_{1/2} \sim V^{0,5}$, для нечетных *n* неупругое рассеяние проявляется еще меньше: $E_{1/2} \sim V^{0,1 \div 0,2}$. Таким образом, формально можно говорить об основной (четные n) и вспомогательной (нечетные n) решетках.

При последующем электронном воздействии при $T = 450^{\circ}$ ($E = -3 ext{ кэВ}$, $D = 5 \cdot 10^{19} ext{ эл./см}^2$) сверхструктура $c(4 \times 4)$ перешла в (4×1) (рис. 1, *a*). Как видно из рис. 2 (кривая 2), произошли существенные перемены и в спектре интенсивности 00-рефлекса, и в форме верхней части оже-пика Si. Особо подчеркнем, что вспомогательная решетка пропала совсем; закон $E_{1/2} \sim V^{0,5}$ при этом по-прежнему справедлив для четных максимумов. Температурная зависимость интенсивности брэгговского пика (008) так же, как и в случае необлученной поверхности.

5 ВМУ, № 2. физика, астрономия

не подчиняется кинематическому описанию. Изменений в концентрации примесей до и после облучения не было обнаружено.

Эффект необратимого «поглощения» нечетных максимумов четными имеет ярко выраженные зависимости от температуры (E=const, D=const), энергим (T=const, D=const) и дозы облучения (E=const, T=const). В температурной зависимости максимум эффекта достигается при T=450°. При увеличении энергии и дозы облучения указанный эффект становится ярко выраженным уже при E=3 кэВ и D= =5 $\cdot 10^{19}$ эл./см² (бо́льшие энергим и дозы в настоящем эксперименте не применялись).

Обсуждение результатов. Всю приведенную выше совокупность экспериментальных данных попытаемся объяснить в рамках модели регибридизации химических связей, охватывающей несколько приповерхностных слоев. При этом наши рассуждения будут основываться на квантово-химическом приближении валентных связей.

Не конкретизируя симметрию гибридизованных орбиталей оборванных связей, мы предположили, что в приповерхностной области кристалла сосуществуют решетки с sp³- и sp²-гибридизациями (рис. 3). Фактически здесь мы возрождаем идею спаривания соседних рядов поверхностных атомов Шлира и Фарнсворта [1], однако при этом решающая роль в реконструкции будет отводиться примесям и структурным дефектам. Полученные две прямые (зависимости $V(n^2)$) мы формально отнесли к решеткам с sp^2 - (n — четные) и sp^3 - (n — нечетные) гибридизациями. Сосуществование таких решеток проявляется во влиянии sp^2 -связей на sp^3 через потенциал $V_{01} \approx 5,5$ эВ и sp^3 - связей на sp^2 через V₀₂≈8,5 эВ. В результате внутренний потенциал кристалла составляет $V_0 \approx 14$ эВ. Интенсивность брэгговских пиков с sp^3 -связями много меньше интенсивности максимумов с четными n. а период решетки, усредненный по нескольким атомным слоям, как уже отмечалось, приближается к объемному значению. Поэтому в самых верхних двух-трех слоях доминируют sp²-связи.

Наблюдаемые нами сверхструктуры (2×1) , $p(2\times2)$ и $c(4\times4)$, как было отмечено, появляются при достижении определенной поверхностной чистоты. Для этого необходим термический отжиг, когда каждый атом поверхности получает порядка 0,1 эВ энергии. Чтобы заставить десорбироваться атом примеси, связанный с атомами кремния нехимическим взаимодействием и находящийся как бы в переменном (зависящем от расстояния) потенциальном поле двух решеток с разной гибридизацией (см. рис. 3), такой величины энергии вполне достаточно. Отсюда следует, что переход от (2×1) - через $p(2\times2)$ - к $c(4\times4)$ -структуре связан с малыми энергетическими эффектами и близок к превращениям второго рода. По-видимому, поэтому нами не было зафиксировано изменений в оже-спектре кремния. Однако более чувствительная ДМЭ-методика фиксирует происходящие перемены в приповерхностной области кристалла.

Из приведенного рис. З нетрудно понять также механизм формирования димеров (модель димеризации [10]). Действительно, укорачивание химической связи между атомами 1 и 2 приводит к смещению атома 2 влево в горизонтальном направлении. Чтобы сохранить необходимую для взаимодействия с окружением длину химических связей, атом 2 смещается также вверх. При этом атом 1 сдвигается вниз, так как он связан с атомом 3, который в свою очередь охвачен кратной овязью (σ — π) с атомом 5. Тогда атомы 1 и 2 становятся партнерами в образовавшемся димере.

Спектр интенсивности облученной поверхности, как уже отмеча-

лось (см. рис. 2, 2), не содержит решетки с нечетными *n*, следовательно, в приповерхностной области кристалла, казалось бы, присутствуют лишь *sp*²-связи. Однако форма оже-сигнала Si свидетельствует об удлинении химических связей на поверхности образца (см. рис. 2, 2). Эти два вывода противоречивы. Результат можно объяснить, учитывая роль примесей в формировании поверхностной структуры. Вероятно, при облучении с энергией 3 кэВ в результате неупругих потерь электронов происходит разрыв л-связей с образованием активных центров атомов кремния с одним неспаренным электроном (рис. 4). Помимо

Рис. 4. Схема образования «модифицированных sp3»-связей

этого идет процесс ионизации внутренних оболочек атомов кремния и примесей (например, атомов углерода). Образующиеся при этом одноименные ионы в силу кулоновского отталкивания смещаются из их первоначальных положений. Те из смещенных атомов, которые сохранили неспаренный электрон, теперь будут взаимодействовать с другими атомами кремния, вызывая тем самым цепную реакцию разрыва л-связей и формирования простых связей (рис. 4) (несмещенным атомам выгоднее взаимодействовать по миг-

рационному механизму (рис. 5, a)). Заметим, что присутствие примесей оказывает также существенное влияние и на процесс дефектообразования в объеме полупроводников [16].

Полученная таким образом структура содержит только ординарные связи. Однако последние нельзя отождествлять с простыми связями в объеме кристалла. Тем не менее направленные в глубь кристалла

5*

Б - si -- si = ∓Si-- Si --Si= =Si -Ľ 11 I tſ - Si' Si --Si ---S. Si --- Si ---1 ľ İ 17 -Si²---- Si Si == S. -Si Si == 1 1 11

Рис. 5. Механизмы миграции л-связей (а) и приостановления цепной реакции (б)

связи поверхностных атомов образуют между собой углы, по-видимому близкие к тетраэдрическим. Сформировавшуюся композицию связей условно назовем «модифицированной sp³»-гибридизацией.

Произошедшая в результате электронного облучения перестройка связей объясняет изменение симметрии элементарной ячейки в ДМЭкартине. Наблюдаемые в этом случае рефлексы с индексами 1/4 и 3/4 можно объяснить как установлением «модифицированной sp³»-гибридизации со специфическим расположением атомов, так и непосредственным участием примесей в формировании ячейки. Действительно, углерода sp³-гибридизованным, возбужденный атом становится а следовательно, способным участвовать в образовании четырех ковалентных связей.

В рамках предлагаемой модели температурная аномальность интенсивности брэгговского пика (008) на необлученной поверхности объясняется сложным характером взаимосвязи решеток с sp²- и sp³- гибридизациями при изменении температуры. Аналогичной особенности не наблюдается для максимумов с большими порядками отражения, по-видимому, потому, что становится значительным влияние объемных решеток. Облучение поверхности приводит к формированию решетки с более жесткими связями (большие частоты Дебая), что проявляется в слабой зависимости интенсивности пика (008) от температуры и объясняется, очевидно, переходом к структуре с «модифицированными sp³»-связями. Температура Дебая, вычисленная в этом случае по кинематической теории, формально превышает объемное значение.

Температурное поведение брэгговских пиков с нечетными п при облунении, свидетельствующее о формировании (4×1) -структуры, объясняется следующим образом. Вероятность разрыва л-связей зависит от температуры. При низких температурах $(T \sim 100 \div 200^{\circ} C)$ за счет малой вероятности раскрытия л-связей возможен процесс приостановления цепной реакции, так как время жизни заряда, возникшего в результате облучения, оказывается в этом случае, по-видимому, меньшим или равным времени необратимого смещения иона кремния из узла. В результате процесс образования «модифицированных sp³»-связей охватывает лишь несколько атомов (рис. 5, б). С повышением температуры, очевидно, процесс разрыва π-связей может происходить одновременно в нескольких местах. Однако при этом растет и скорость релаксации возбужденных атомов кремния и примеси [17]. Таким образом, при достижении определенной температуры процесс рекомбинации л-связей, протекающий по миграционному механизму (см. рис. 5, а), начинает преобладать над вероятностью процесса образования «модифицированной sp³»-гибридизации. Поэтому температурная зависимость скорости формирования «модифицированных *sp*³»-связей проходит через максимум (T_{max}=450°C). Аналогичная температурная зависимость скорости накопления дефектов имеет место в объеме полупроводника [17].

Заключение. Приведенные результаты находятся в некотором противоречии с моделью Чэди [8]. Согласно нашим данным, решетка $p(2\times2)$ переходит в $c(4\times4)$, а не в $c(2\times2)$, причем значительной перестройки связей в этом случае не зафиксировано, как это должно было бы наблюдаться при структурном превращении из $p(2\times2)$ - в $c(2\times2)$ -ячейку [9]. Встав на позицию регибридизации химических связей, решающую роль в реконструкции поверхности кремния (100) мы отвели структурным дефектам и примесям. В нашей модели образование какой-либо из структур (2×1) , $p(2\times2)$ и $c(4\times4)$ определяется количеством примесей, содержащихся на поверхности кристалла, как бы «застрявших» в структурных дефектах образца. Появление же новой (4×1) периодичности обязано введению дополнительного числа дефектов посредством электронного облучения.

СПИСОК ЛИТЕРАТУРЫ

[1] Schlier R. E., Farnisworth H. E.//J. Chem. Phys. 1959. 30, N 4. P. 917-926. [2] Lander J. J., Morrison J.//J. Appl. Phys. 1963. 34, N 5. P. 1403-1410. [3]: Poppendieck T. D., Ngoc T. C., Webb M. B.//Surf. Sci. 1978. 75, N 2. P. 287-315. [4] Appelbaum A., Hamann D. R.//Surf. Sci. 1978. 74, N 1. P. 21-33. [5] Tong S. Y., Maldonado A. L.//Surf. Sci. 1978. 78, N 2. P. 459-467. [6] Seiwatz R.//Surf. Sci. 1964. 2. P. 473-483. [7] Sona F. et al.// //J. Phys. C. 1977. 10, N 4. P. L67-L72. [8] Chadi D. J.//Phys. Rev. Lett. 1979. 43, N 1. P. 43-47. [9] Chadi D. J.//Appl. Opt. 1980. 19, N 23. P. 3971-3973. [10] Harrison W. A.//Surf. Sci. 1976. 55, N 1. P. 1-19. [11] Phillips J. C.//Surf. Sci. 1973. 40, N 3. P. 459-463. [12] Tromp R. M., Smeenk R. G., Saris F. W.//So-Hid State Comm. 1981. 39, N 6. P. 755-758. [13] Holland B. W., Duke C. B., Paton A.//Surf. Sci. 1984. 140, N 2. P. L269-L278. [14] Po6eptc M., Makke H. Химия поверхности раздела металл—газ. М., 1981. С. 146. [15] Somorjai G. A., Farrell H. H.//Adv. Chem. Phys. 1971. 20. Р. 215—339. [16] Витовский Н. А. и др.//ФТП. 1979. 13, № 5. С. 925—932. [17] Вавилов В. С., Кив А. Е., Ниязова О. Р.//Механизмы образования и миграции дефектов в полупроводниках. М., 1981. С. 129.

Поступила в редакцию 27.11.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 2

УДК 548.732

ТЕОРИЯ ФОРМИРОВАНИЯ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ КОГЕРЕНТНОГО КОМПТОНОВСКОГО РАССЕЯНИЯ

В. А. Бушуев, А. О. Айт

(кафедра физики твердого тела)

Когерентное комптоновское рассеяние (ККР) рентгеновских лучей в совершенных кристаллах характеризуется образованием когерентной, суперпозиции неупруго рассеянных волн с модами $|\mathbf{k}_0, \omega\rangle$ и $|\mathbf{k}_0+\mathbf{h}, \omega\rangle$, где \mathbf{k}_0 — волновой вектор, ω — частота КР, \mathbf{h} — вектор обратной решетки [1, 2]. В процессе ККР импульс отдачи \hbar передается всему кристаллу как целому, что приводит к значительному изменению энергетического спектра по сравнению с некогерентным КР. В результате динамического взаимодействия между пространственно-сопряженными модами КР на фоне широкого спектра КР формируются узкие линии, форма которых определяется видом парциальных сечений КР, а также структурой и степенью совершенства кристалла. Экспериментальное исследование дифракционных провалов при КР в несовершенных кристаллах проведено в работе [3]. Когерентное КР в условиях дифракции внешнего излучения наблюдалось в работе [4].

Настоящая работа посвящена дальнейшему развитию теории ККР, в частности, учтено влияние недиагональных сечений КР и аномального прохождения комптоновских квантов на спектральную интенсивность линий ККР в поглощающих кристаллах произвольной толщины. Проанализированы возможности ККР как метода исследования электронной структуры твердого тела.

Пусть внешнее излучение с волновым вектором k_1 , частотой ω_1 и поляризацией e_1 падает под углом φ_1 к нормали п на плоскопараллельный кристалл толщины *l*, выведенный из отражающего положения для внешнего излучения. Регистрация КР ведется в направлении ж. В силу граничных условий $k_0 = \varkappa + \varkappa en$, где $\varkappa = \omega/c$, $e \ll 1$ [2]. В работе рассматриваются две геометрии рассеяния — «на отражение» и «на прохождение». В первом случае кванты КР k_0 и $k_h = k_0 + h$ выходят из кристалла через ту же грань, на которую падает внешнее излучение, во втором — через противоположную грань. С учетом [2] для спектральной интенсивности КР можно получить

$$I(\omega, \vartheta) = \sum_{\alpha, \alpha'} \sum_{m} \left[\left(L_{\alpha m}^{(0)} L_{\alpha' m}^{(0)*} \sigma_{00}^{(m)} + L_{\alpha m}^{(h)} L_{\alpha' m}^{(h)*} \sigma_{hh}^{(m)} \right) V_{\alpha \alpha'}^{(m)} + \right]$$

+ 2 Re $(L_{\alpha m}^{(0)} L_{\alpha' m}^{(h)^{*}} \sigma_{0h}^{(m)} V_{\alpha \alpha'}^{(m)})] I_{1} n_{0},$

(1)